SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Estivill X) "

Sökning: WFRF:(Estivill X)

  • Resultat 1-10 av 34
  • [1]234Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, Peter J., et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - 1476-4687. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation; analyses timings and patterns of tumour evolution; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity; and evaluates a range of more-specialized features of cancer genomes.
2.
  •  
3.
  • Tsoi, Lam C, et al. (författare)
  • Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity
  • 2012
  • Ingår i: Nature genetics. - 1546-1718. ; 44:12, s. 1341-1348
  • Tidskriftsartikel (refereegranskat)abstract
    • To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36 the number associated with psoriasis in European individuals. We also identified, using conditional analyses, five independent signals within previously known loci. The newly identified loci shared with other autoimmune diseases include candidate genes with roles in regulating T-cell function (such as RUNX3, TAGAP and STAT3). Notably, they included candidate genes whose products are involved in innate host defense, including interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C) and nuclear factor (NF)-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense.
  •  
4.
  • van der Valk, Ralf J P, et al. (författare)
  • A novel common variant in DCST2 is associated with length in early life and height in adulthood.
  • 2015
  • Ingår i: Human molecular genetics. - 1460-2083. ; 24:4, s. 1155-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Bryois, J, et al. (författare)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • Ingår i: Nature Genetics. - 1061-4036. ; 52:5, s. 482-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
10.
  • Bustamante, M., et al. (författare)
  • Dose and time effects of solar-simulated ultraviolet radiation on the <em>in vivo</em> human skin transcriptome
  • 2020
  • Ingår i: British Journal of Dermatology. - 0007-0963 .- 1365-2133. ; 182:6, s. 1458-1468
  • Tidskriftsartikel (refereegranskat)abstract
    • <p><em>Background</em> Terrestrial ultraviolet (UV) radiation causes erythema, oxidative stress, DNA mutations and skin cancer. Skin can adapt to these adverse effects by DNA repair, apoptosis, keratinization and tanning.</p><p><em>Objectives</em> To investigate the transcriptional response to fluorescent solar-simulated radiation (FSSR) in sun-sensitive human skin in vivo.</p><p><em>Methods</em> Seven healthy male volunteers were exposed to 0, 3 and 6 standard erythemal doses (SED). Skin biopsies were taken at 6 h and 24 h after exposure. Gene and microRNA expression were quantified with next generation sequencing. A set of candidate genes was validated by quantitative polymerase chain reaction (qPCR); and wavelength dependence was examined in other volunteers through microarrays.</p><p><em>Results</em> The number of differentially expressed genes increased with FSSR dose and decreased between 6 and 24 h. Six hours after 6 SED, 4071 genes were differentially expressed, but only 16 genes were affected at 24 h after 3 SED. Genes for apoptosis and keratinization were prominent at 6 h, whereas inflammation and immunoregulation genes were predominant at 24 h. Validation by qPCR confirmed the altered expression of nine genes detected under all conditions; genes related to DNA repair and apoptosis; immunity and inflammation; pigmentation; and vitamin D synthesis. In general, candidate genes also responded to UVA1 (340-400 nm) and/or UVB (300 nm), but with variations in wavelength dependence and peak expression time. Only four microRNAs were differentially expressed by FSSR.</p><p><em>Conclusions</em> The UV radiation doses of this acute study are readily achieved daily during holidays in the sun, suggesting that the skin transcriptional profile of 'typical' holiday makers is markedly deregulated.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34
  • [1]234Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy