SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Estivill X.) ;conttype:(refereed)"

Sökning: WFRF:(Estivill X.) > Refereegranskat

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  • Akdemir, KC, et al. (författare)
  • Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer
  • 2020
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 52:3, s. 294-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Bryois, J., et al. (författare)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:5, s. 482-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
8.
  • Bustamante, M., et al. (författare)
  • Dose and time effects of solar-simulated ultraviolet radiation on the in vivo human skin transcriptome
  • 2020
  • Ingår i: British Journal of Dermatology. - : Oxford University Press (OUP). - 0007-0963 .- 1365-2133. ; 182:6, s. 1458-1468
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Terrestrial ultraviolet (UV) radiation causes erythema, oxidative stress, DNA mutations and skin cancer. Skin can adapt to these adverse effects by DNA repair, apoptosis, keratinization and tanning.Objectives To investigate the transcriptional response to fluorescent solar-simulated radiation (FSSR) in sun-sensitive human skin in vivo.Methods Seven healthy male volunteers were exposed to 0, 3 and 6 standard erythemal doses (SED). Skin biopsies were taken at 6 h and 24 h after exposure. Gene and microRNA expression were quantified with next generation sequencing. A set of candidate genes was validated by quantitative polymerase chain reaction (qPCR); and wavelength dependence was examined in other volunteers through microarrays.Results The number of differentially expressed genes increased with FSSR dose and decreased between 6 and 24 h. Six hours after 6 SED, 4071 genes were differentially expressed, but only 16 genes were affected at 24 h after 3 SED. Genes for apoptosis and keratinization were prominent at 6 h, whereas inflammation and immunoregulation genes were predominant at 24 h. Validation by qPCR confirmed the altered expression of nine genes detected under all conditions; genes related to DNA repair and apoptosis; immunity and inflammation; pigmentation; and vitamin D synthesis. In general, candidate genes also responded to UVA1 (340-400 nm) and/or UVB (300 nm), but with variations in wavelength dependence and peak expression time. Only four microRNAs were differentially expressed by FSSR.Conclusions The UV radiation doses of this acute study are readily achieved daily during holidays in the sun, suggesting that the skin transcriptional profile of 'typical' holiday makers is markedly deregulated.
  •  
9.
  • Castro-Giner, F., et al. (författare)
  • Joint effect of obesity and TNFA variability on asthma : two international cohort studies
  • 2009
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 33:5, s. 1003-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is a risk factor for asthma. Adipose tissue expresses pro-inflammatory molecules including tumour necrosis factor (TNF), and levels of TNF are also related to polymorphisms in the TNF-alpha (TNFA) gene. The current authors examined the joint effect of obesity and TNFA variability on asthma in adults by combining two population-based studies. The European Community Respiratory Health Survey and the Swiss Cohort Study on Air Pollution and Lung and Heart Disease in Adults used comparable protocols, questionnaires and measures of lung function and atopy. DNA samples from 9,167 participants were genotyped for TNFA -308 and lymphotoxin-alpha (LTA) +252 gene variants. Obesity and TNFA were associated with asthma when mutually adjusting for their independent effects (odds ratio (OR) for obesity 2.4, 95% confidence interval (CI) 1.7-3.2; OR for TNFA -308 polymorphism 1.3, 95% CI 1.1-1.6). The association of obesity with asthma was stronger for subjects carrying the G/A and A/A TNFA -308 genotypes compared with the more common G/G genotype, particularly among nonatopics (OR for G/A and A/A genotypes 6.1, 95% CI 2.5-14.4; OR for G/G genotype 1.7, 95% CI 0.8-3.3). The present findings provide, for the first time, evidence for a complex pattern of interaction between obesity, a pro-inflammatory genetic factor and asthma.
  •  
10.
  • Castro-Giner, F., et al. (författare)
  • Positionally cloned genes and age-specific effects in asthma and atopy : an international population-based cohort study (ECRHS)
  • 2010
  • Ingår i: Thorax. - : BMJ. - 0040-6376 .- 1468-3296. ; 65:2, s. 124-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Several genes identified by positional cloning have been associated with asthma and atopy, but few findings have been replicated. Age at onset of asthma has been associated with different phenotypic characteristics, and with variants at chromosome 17q21 identified through genome-wide association. This study examined the associations and age-specific effects on asthma, atopy and bronchial hyper-responsiveness (BHR) of five candidate genes previously identified by positional cloning (ADAM33, PHF11, NPSR1, DPP10, SPINK5). Methods 51 polymorphisms from 2474 participants from 13 countries who took part in the European Community Respiratory Health Survey (1990-2000) were studied. Asthma and age at onset of asthma were assessed by questionnaire data, BHR by methacholine challenge and atopy by specific immunoglobulin E to four common allergens. Results Significant associations with asthma, atopy and particularly for asthma with atopy were observed for a large region of 47 kb in the NPSR1 gene, even after Bonferroni correction for multiple comparisons (p < 0.001). The associations with NPSR1 were stronger in those reporting a first attack of asthma before the age of 15, with statistically significant interactions with age of onset found for three SNPs. The evidence for ADAM33 and BHR and for an age-specific effect of two SNPs in DPP10 and asthma was weaker. Conclusion This study provides further evidence for an effect of NPSR1 on asthma, atopy and atopic asthma. In addition, this analysis suggests a role for NPSR1 in early-onset asthma driven by the strong effect of this gene on atopic asthma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy