SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fadista Joao) ;pers:(Tuomi Tiinamaija)"

Sökning: WFRF:(Fadista Joao) > Tuomi Tiinamaija

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
2.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
3.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
4.
  • Lagou, Vasiliki, et al. (författare)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
5.
  • Manning, Alisa, et al. (författare)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
  •  
6.
  • Prasad, Rashmi B., et al. (författare)
  • Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:8, s. 1702-1713
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Genome-wide association studies (GWAS) have identified more than 65 genetic loci associated with risk of type 2 diabetes. However, the contribution of distorted parental transmission of alleles to risk of type 2 diabetes has been mostly unexplored. Our goal was therefore to search for parent-of-origin effects (POE) among type 2 diabetes loci in families. Methods: Families from the Botnia study (n = 4,211, 1,083 families) were genotyped for 72 single-nucleotide polymorphisms (SNPs) associated with type 2 diabetes and assessed for POE on type 2 diabetes. The family-based Hungarian Transdanubian Biobank (HTB) (n = 1,463, >135 families) was used to replicate SNPs showing POE. Association of type 2 diabetes loci within families was also tested. Results: Three loci showed nominal POE, including the previously reported variants in KCNQ1, for type 2 diabetes in families from Botnia (rs2237895: pPOE = 0.037), which can be considered positive controls. The strongest POE was seen for rs7578597 SNP in the THADA gene, showing excess transmission of the maternal risk allele T to diabetic offspring (Botnia: pPOE = 0.01; HTB pPOE = 0.045). These data are consistent with previous evidence of allelic imbalance for expression in islets, suggesting that the THADA gene can be imprinted in a POE-specific fashion. Five CpG sites, including those flanking rs7578597, showed differential methylation between diabetic and non-diabetic donor islets. Conclusions/interpretation: Taken together, the data emphasise the need for genetic studies to consider from which parent an offspring has inherited a susceptibility allele.
  •  
7.
  • Prokopenko, Inga, et al. (författare)
  • A Central Role for GRB10 in Regulation of Islet Function in Man.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
  •  
8.
  • Tuomi, Tiinamaija, et al. (författare)
  • Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes
  • 2016
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 23:6, s. 1067-1077
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is a global pandemic. Genome-wide association studies (GWASs) have identified >100 genetic variants associated with the disease, including a common variant in the melatonin receptor 1 b gene (MTNR1B). Here, we demonstrate increased MTNR1B expression in human islets from risk G-allele carriers, which likely leads to a reduction in insulin release, increasing T2D risk. Accordingly, in insulin-secreting cells, melatonin reduced cAMP levels, and MTNR1B overexpression exaggerated the inhibition of insulin release exerted by melatonin. Conversely, mice with a disruption of the receptor secreted more insulin. Melatonin treatment in a human recall-by-genotype study reduced insulin secretion and raised glucose levels more extensively in risk G-allele carriers. Thus, our data support a model where enhanced melatonin signaling in islets reduces insulin secretion, leading to hyperglycemia and greater future risk of T2D. The findings also imply that melatonin physiologically serves to inhibit nocturnal insulin release.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy