SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Falcke H.D.) ;hsvcat:1"

Sökning: WFRF:(Falcke H.D.) > Naturvetenskap

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akiyama, Kazunori, et al. (författare)
  • The persistent shadow of the supermassive black hole of M 87: I. Observations, calibration, imaging, and analysis*
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3-3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30 relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5× 109M. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet.
  •  
2.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A * Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 ± 2.3 μas (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 × 106 M☉, which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i > 50°), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 103-105 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass.
  •  
3.
  • Gurvits, L. I., et al. (författare)
  • The science case and challenges of spaceborne sub-millimeter interferometry: the study case of TeraHertz Exploration and Zooming-in for Astrophysics (THEZA)
  • 2021
  • Ingår i: Proceedings of the International Astronautical Congress, IAC. - 0074-1795. ; A7
  • Konferensbidrag (refereegranskat)abstract
    • Ultra-high angular resolution in astronomy has always been an important vehicle for making fundamental discoveries. Recent results in direct imaging of the vicinity of the super-massive black hole in the nucleus of the radio galaxy M87 by the millimeter VLBI system Event Horizon Telescope (EHT) and various pioneering results of the Space VLBI mission RadioAstron provided new momentum in high angular resolution astrophysics. In both mentioned cases, the angular resolution reached the values of about 10−20 microrcseconds (0.05−0.1 nanoradian). Angular resolution is proportional to the observing wavelength and inversely proportional to the interferometer baseline length. In the case of Earth-based EHT, the highest angular resolution was achieved by combining the shortest possible wavelength of 1.3 mm with the longest possible baselines, comparable to the Earth’s diameter. For RadioAstron, operational wavelengths were in the range from 92 cm down to 1.3 cm, but the baselines were as long as ∼350,000 km. However, these two highlights of radio astronomy, EHT and RadioAstron do not”saturate” the interest to further increase in angular resolution. Quite opposite: the science case for further increase in angular resolution of astrophysical studies becomes even stronger. A natural and, in fact, the only possible way of moving forward is to enhance mm/sub-mm VLBI by extending baselines to extraterrestrial dimensions, i.e. creating a mm/sub-mm Space VLBI system. The inevitable move toward space-borne mm/sub-mm VLBI is a subject of several concept studies. In this presentation we will focus on one of them called TeraHertz Exploration and Zooming-in for Astrophysics (THEZA), prepared in response to the ESA’s call for its next major science program Voyage 2050 (Gurvits et al. 2021). The THEZA rationale is focused at the physics of spacetime in the vicinity of super-massive black holes as the leading science drive. However, it will also open up a sizable new range of hitherto unreachable parameters of observational radio astrophysics and create a multi-disciplinary scientific facility and offer a high degree of synergy with prospective “single dish” space-borne sub-mm astronomy (e.g., Wiedner et al. 2021) and infrared interferometry (e.g., Linz et al. 2021). As an amalgam of several major trends of modern observational astrophysics, THEZA aims at facilitating a breakthrough in high-resolution high image quality astronomical studies.
  •  
4.
  • Janssen, Michael, et al. (författare)
  • Event Horizon Telescope observations of the jet launching and collimation in Centaurus A
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 5:10, s. 1017-1028
  • Tidskriftsartikel (refereegranskat)abstract
    • Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources1. Centaurus A is the closest radio-loud source to Earth2. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations3, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses5,6.
  •  
5.
  • Morabito, L., et al. (författare)
  • Sub-arcsecond imaging with the International LOFAR Telescope: I. Foundational calibration strategy and pipeline
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • The International LOFAR Telescope is an interferometer with stations spread across Europe. With baselines of up to ∼2000 km, LOFAR has the unique capability of achieving sub-arcsecond resolution at frequencies below 200 MHz. However, it is technically and logistically challenging to process LOFAR data at this resolution. To date only a handful of publications have exploited this capability. Here we present a calibration strategy that builds on previous high-resolution work with LOFAR. It is implemented in a pipeline using mostly dedicated LOFAR software tools and the same processing framework as the LOFAR Two-metre Sky Survey (LoTSS). We give an overview of the calibration strategy and discuss the special challenges inherent to enacting high-resolution imaging with LOFAR, and describe the pipeline, which is publicly available, in detail. We demonstrate the calibration strategy by using the pipeline on P205+55, a typical LoTSS pointing with an 8 h observation and 13 international stations. We perform in-field delay calibration, solution referencing to other calibrators in the field, self-calibration of these calibrators, and imaging of example directions of interest in the field. We find that for this specific field and these ionospheric conditions, dispersive delay solutions can be transferred between calibrators up to ∼1.5° away, while phase solution transferral works well over ∼1°. We also demonstrate a check of the astrometry and flux density scale with the in-field delay calibrator source. Imaging in 17 directions, we find the restoring beam is typically ∼0.3″ ×0.2″ although this varies slightly over the entire 5 deg2 field of view. We find we can achieve ∼80-300 μJy bm-1 image rms noise, which is dependent on the distance from the phase centre; typical values are ∼90 μJy bm-1 for the 8 h observation with 48 MHz of bandwidth. Seventy percent of processed sources are detected, and from this we estimate that we should be able to image roughly 900 sources per LoTSS pointing. This equates to ∼ 3 million sources in the northern sky, which LoTSS will entirely cover in the next several years. Future optimisation of the calibration strategy for efficient post-processing of LoTSS at high resolution makes this estimate a lower limit.
  •  
6.
  • Roelofs, F., et al. (författare)
  • SYMBA: An end-to-end VLBI synthetic data generation pipeline: Simulating Event Horizon Telescope observations of M 87
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images.
  •  
7.
  • Akiyama, Kazunori, et al. (författare)
  • First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A∗ (Sgr A∗), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M≈ 4 × 106 M⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A∗. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%°-10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication.
  •  
8.
  • Eatough, Ralph P., et al. (författare)
  • Verification of Radiative Transfer Schemes for the EHT
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 897:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope (EHT) Collaboration has recently produced the first resolved images of the central supermassive black hole in the giant elliptical galaxy M87. Here we report on tests of the consistency and accuracy of the general relativistic radiative transfer codes used within the collaboration to model M87∗ and Sgr A∗. We compare and evaluate (1) deflection angles for equatorial null geodesics in a Kerr spacetime; (2) images calculated from a series of simple, parameterized matter distributions in the Kerr metric using simplified emissivities and absorptivities; (3) for a subset of codes, images calculated from general relativistic magnetohydrodynamics simulations using different realistic synchrotron emissivities and absorptivities; (4) observables for the 2017 configuration of EHT, including visibility amplitudes and closure phases. The error in total flux is of order 1% when the codes are run with production numerical parameters. The dominant source of discrepancies for small camera distances is the location and detailed setup of the software "camera"that each code uses to produce synthetic images. We find that when numerical parameters are suitably chosen and the camera is sufficiently far away the images converge and that for given transfer coefficients, numerical uncertainties are unlikely to limit parameter estimation for the current generation of EHT observations. The purpose of this paper is to describe a verification and comparison of EHT radiative transfer codes. It is not to verify EHT models more generally.
  •  
9.
  • Iacobelli, M., et al. (författare)
  • Studying Galactic interstellar turbulence through fluctuations in synchrotron emission: First LOFAR Galactic foreground detection
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 558, s. 721-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The characteristic outer scale of turbulence (i.e. the scale at which the dominant source of turbulence injects energy to the interstellar medium) and the ratio of the random to ordered components of the magnetic field are key parameters to characterise magnetic turbulence in the interstellar gas, which affects the propagation of cosmic rays within the Galaxy. We provide new constraints to those two parameters. Methods. We use the LOw Frequency ARray (LOFAR) to image the diffuse continuum emission in the Fan region at (l,b) ∼ (137.0, +7.0) at 80′′ × 70′′ resolution in the range [146, 174] MHz. We detect multi-scale fluctuations in the Galactic synchrotron emission and compute their power spectrum. Applying theoretical estimates and derivations from the literature for the first time, we derive the outer scale of turbulence and the ratio of random to ordered magnetic field from the characteristics of these fluctuations. Results. We obtain the deepest image of the Fan region to date and find diffuse continuum emission within the primary beam. The power spectrum displays a power law behaviour for scales between 100 and 8 arcmin with a slope α =-1.84 ± 0.19. We find an upper limit of ∼20 pc for the outer scale of the magnetic interstellar turbulence toward the Fan region, which is in agreement with previous estimates in literature. We also find a variation of the ratio of random to ordered field as a function of Galactic coordinates, supporting different turbulent regimes. Conclusions. We present the first LOFAR detection and imaging of the Galactic diffuse synchrotron emission around 160 MHz from the highly polarized Fan region. The power spectrum of the foreground synchrotron fluctuations is approximately a power law with a slope α ≈-1.84 up to angular multipoles of ≤1300, corresponding to an angular scale of ∼8 arcmin. We use power spectra fluctuations from LOFAR as well as earlier GMRT and WSRT observations to constrain the outer scale of turbulence (Lout) of the Galactic synchrotron foreground, finding a range of plausible values of 10-20 pc. Then, we use this information to deduce lower limits of the ratio of ordered to random magnetic field strength. These are found to be 0.3, 0.3, and 0.5 for the LOFAR, WSRT and GMRT fields considered respectively. Both these constraints are in agreement with previous estimates. © 2013 ESO.
  •  
10.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. I. the Shadow of the Supermassive Black Hole
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ±3 μas, which is circular and encompasses a central depression in brightness with a flux ratio ≈10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M =(6.5 ±0.7) ×10 9 M o . Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy