SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Falster Daniel) "

Sökning: WFRF:(Falster Daniel)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Falster, Daniel, et al. (författare)
  • AusTraits, a curated plant trait database for the Australian flora
  • 2021
  • Ingår i: Scientific Data. - : Nature Portfolio. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  •  
3.
  • Falster, Daniel S., et al. (författare)
  • Multitrait successional forest dynamics enable diverse competitive coexistence
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:13, s. E2719-E2728
  • Tidskriftsartikel (refereegranskat)abstract
    • To explain diversity in forests, niche theory must show how multiple plant species coexist while competing for the same resources. Although successional processes are widespread in forests, theoretical work has suggested that differentiation in successional strategy allows only a few species stably to coexist, including only a single shade tolerant. However, this conclusion is based on current niche models, which encode a very simplified view of plant communities, suggesting that the potential for niche differentiation has remained unexplored. Here, we show how extending successional niche models to include features common to all vegetation-height-structured competition for light under a prevailing disturbance regime and two trait-mediated tradeoffs in plant function-enhances the diversity of species that can be maintained, including a diversity of shade tolerants. We identify two distinct axes of potential niche differentiation, corresponding to the traits leaf mass per unit leaf area and height at maturation. The first axis allows for coexistence of different shade tolerances and the second axis for coexistence among species with the same shade tolerance. Addition of this second axis leads to communities with a high diversity of shade tolerants. Niche differentiation along the second axis also generates regions of trait space wherein fitness is almost equalized, an outcome we term "evolutionarily emergent near-neutrality." For different environmental conditions, our model predicts diverse vegetation types and trait mixtures, akin to observations. These results indicate that the outcomes of successional niche differentiation are richer than previously thought and potentially account for mixtures of traits and species observed in forests worldwide.
  •  
4.
  • Falster, Daniel S., et al. (författare)
  • plant : A package for modelling forest trait ecology and evolution
  • 2016
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 7:2, s. 136-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Population dynamics in forests are strongly size-structured: larger plants shade smaller plants while also expending proportionately more energy on building and maintaining woody stems. Although the importance of size structure for demography is widely recognized, many models either omit it entirely or include only coarse approximations. Here, we introduce the plant package, an extensible framework for modelling size- and trait-structured demography, ecology and evolution in simulated forests. At its core, plant is an individual-based model where plant physiology and demography are mediated by traits. Individual plants from multiple species can be grown in isolation, in patches of competing plants or in metapopulations under a disturbance regime. These dynamics can be integrated into metapopulation-level estimates of invasion fitness and vegetation structure. Because fitness emerges as a function of traits, plant provides a novel arena for exploring eco-evolutionary dynamics. plant is an open source R package and is available at . Accessed from R, the core routines in plant are written in C++. The package provides for alternative physiologies and for capturing trade-offs among parameters. A detailed test suite is provided to ensure correct behaviour of the code. plant provides a transparent platform for investigating how physiological rules and functional trade-offs interact with competition and disturbance regimes to influence vegetation demography, structure and diversity.
  •  
5.
  • Falster, Daniel, et al. (författare)
  • The influence of four major plant traits on average height, leaf area cover, net primary productivity, and standing biomass in single-species forests : a theoretical investigation
  • 2011
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 99:1, s. 148-164
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous plant traits are known to influence aspects of individual performance, including rates of carbon uptake, tissue turnover, mortality and fecundity. These traits are bound to influence emergent properties of vegetation because quantities such as leaf-area cover, average height, primary productivity and density of standing biomass result from the collective behaviour of individuals. Yet, little is known about the influence of individual traits on these emergent properties, despite the widespread use in current vegetation models of plant functional types, each of which is defined by a constellation of traits. We examine the influence of four key traits (leaf economic strategy, height at maturation, wood density, and seed size) on four emergent vegetation properties (average height of leaf area, leaf-area index, net primary productivity and biomass density). We employ a trait-, size- and patch-structured model of vegetation dynamics that allows scaling up from individual-level growth processes and probabilistic disturbances to landscape-level predictions. A physiological growth model incorporating relevant trade-offs was designed and calibrated based on known empirical patterns. The resulting vegetation model naturally exhibits a range of phenomena commonly observed in vegetation dynamics. We modelled single-species stands, varying each trait over its known empirical range. Seed size had only a small effect on vegetation properties, primarily because our metapopulations were not seed-limited. The remaining traits all had larger effects on vegetation properties, especially on biomass density. Leaf economic strategy influenced minimum light requirement, and thus total leaf area and basal area. Wood density and height at maturation influenced vegetation mainly by modifying individual stem mass. These effects of traits were maintained, and sometimes amplified, across stands differing in productivity and mean disturbance interval. Synthesis: Natural trait variation can cause large differences in emergent properties of vegetation, the magnitudes of which approach those arising through changes to site productivity and disturbance frequency. Our results therefore underscore the need for next-generation vegetation models that incorporate functional traits together with their effects on the patch and size structure of vegetation.
  •  
6.
  • Franklin, Oskar, et al. (författare)
  • Organizing principles for vegetation dynamics
  • 2020
  • Ingår i: Nature plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 6:5, s. 444-453
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants and vegetation play a critical-but largely unpredictable-role in global environmental changes due to the multitude of contributing processes at widely different spatial and temporal scales. In this Perspective, we explore approaches to master this complexity and improve our ability to predict vegetation dynamics by explicitly taking account of principles that constrain plant and ecosystem behaviour: natural selection, self-organization and entropy maximization. These ideas are increasingly being used in vegetation models, but we argue that their full potential has yet to be realized. We demonstrate the power of natural selection-based optimality principles to predict photosynthetic and carbon allocation responses to multiple environmental drivers, as well as how individual plasticity leads to the predictable self-organization of forest canopies. We show how models of natural selection acting on a few key traits can generate realistic plant communities and how entropy maximization can identify the most probable outcomes of community dynamics in space- and time-varying environments. Finally, we present a roadmap indicating how these principles could be combined in a new generation of models with stronger theoretical foundations and an improved capacity to predict complex vegetation responses to environmental change. Integrating natural selection and other organizing principles into next-generation vegetation models could render them more theoretically sound and useful for earth system applications and modelling climate impacts.
  •  
7.
  • Hellström, Lars, 1974-, et al. (författare)
  • Branch Thinning and the Large-Scale, Self-Similar Structure of Trees
  • 2018
  • Ingår i: American Naturalist. - : UNIV CHICAGO PRESS. - 0003-0147 .- 1537-5323. ; 192:1, s. E37-E47
  • Tidskriftsartikel (refereegranskat)abstract
    • Branch formation in trees has an inherent tendency toward exponential growth, but exponential growth in the number of branches cannot continue indefinitely. It has been suggested that trees balance this tendency toward expansion by also losing branches grown in previous growth cycles. Here, we present a model for branch formation and branch loss during ontogeny that builds on the phenomenological assumption of a branch carrying capacity. The model allows us to derive approximate analytical expressions for the number of tips on a branch, the distribution of growth modules within a branch, and the rate and size distribution of tree wood litter produced. Although limited availability of data makes empirical corroboration challenging, we show that our model can fit field observations of red maple (Acer rubrum) and note that the age distribution of discarded branches predicted by our model is qualitatively similar to an empirically observed distribution of dead and abscised branches of balsam poplar (Populus balsamifera). By showing how a simple phenomenological assumptionthat the number of branches a tree can maintain is limitedleads directly to predictions on branching structure and the rate and size distribution of branch loss, these results potentially enable more explicit modeling of woody tissues in ecosystems worldwide, with implications for the buildup of flammable fuel, nutrient cycling, and understanding of plant growth.
  •  
8.
  • Jucker, Tommaso, et al. (författare)
  • Tallo: A global tree allometry and crown architecture database
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:17, s. 5254-5268
  • Tidskriftsartikel (refereegranskat)abstract
    • Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields.To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599.To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
  •  
9.
  • Lindh, Magnus, 1973-, et al. (författare)
  • Evolution of tree crown shape and the influence of productivity, incident sun angle, and latitude
  • 2016
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Across the globe, large variations are observed in plant architecture, from bushes in tundra and semi desert, to high top-heavy trees in boreal and tropical forests. Despite recent advances in large scale monitoring of forests, little is known about how crown architecture varies with environmental conditions. We investigate how shading from the plant on itself, and the shading from the forest influence growth, using a dynamic size-structured crown architecture model with mean-field shading and self-shading, based on an established model. We evolve the two traits crown top-heaviness and crown width-to-height ratio.We report the following findings: (1) Tree crowns are shaped by trade-offs. Top-heavy crowns intercept light well as they can reach high up in the vertical light gradient, but they have low crown-rise efficiency. Wide crowns have a low leaf density per volume giving low self-shading, but a large cost for branches. (2) When coevolving the two traits we find a single evolutionarily stable strategy, far away from the strategy maximizing net primary production. (3) When only sun angle decreases with latitude, both crown width-to-height ratio and crown top-heaviness are decreasing with latitude. When both sun angle and light assimilation response to canopy openness decreases with latitude, crown width-to-height ratio is decreasing significantly only at sites with low productivity, while crown top-heaviness decreases for all sites independent of productivity. Crown top-heaviness increases with increasing site productivity, as a result of a darker forest caused by an increasing density of plants. (4) When varying latitude and sun angle over large ranges we find that crown width-to-height ratio has a maximum at intermediate net primary production or leaf area index, while crown top heaviness is saturating for high net primary production or leaf area index.Our model approach makes it possible to study evolving crown shapes in high detail, and we can identify trade-offs for crown shape. As expected crown top-heaviness is increasing with site productivity and net primary production, but crown width-to-height ratio has a rich and a more unexpected response due to interactions of self-shading and mean-field-shading.
  •  
10.
  • Lindh, Magnus, et al. (författare)
  • Latitudinal effects on crown shape evolution
  • 2018
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 8:16, s. 8149-8158
  • Tidskriftsartikel (refereegranskat)abstract
    • Large variations in crown shape are observed across the globe, from plants with wide and deep crowns to those with leaves clustered at the top. While there have been advances in the large-scale monitoring of forests, little is known about factors driving variations in crown shape with environmental conditions. Previous theoretical research suggests a gradient in crown shape with latitude, due to the effects of sun angle. Yet, it remains unclear whether such changes are also predicted under competition. Using a size-structured forest-growth model that incorporates self-shading from plants and competitive shading from their neighbors, we investigate how changes in site productivity and sun angle shape crown evolution. We consider evolution in two traits describing the top-heaviness and width-to-height ratio of crowns, shaped by trade-offs reflecting the costs and benefits of alternative architectures. In top-heavy trees, most of the leaves are at the top half of the trunk. We show that, contrary to common belief, the angle of sun beams per se has only a weak influence on crown shapes, except at low site productivity. By contrast, reduced site productivity has a strong effect, with trees growing in less productive sites keeping their leaves closer to the ground. The crown width-to-height ratio is generally higher at a lower site productivity, but this trait is not strongly influenced by any environmental factor. This theoretical analysis brings into question established beliefs about the effects of latitude on crown shapes. By introducing geometry-related growth constraints caused by shading from both the surrounding forest and the tree on itself, and costs for constructing and maintaining a three-dimensional crown, our analysis suggests crown shapes may vary with latitude, mostly via effects on overall site productivity, and less because of the angle of the sun.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (13)
annan publikation (2)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Brännström, Åke, 197 ... (5)
Manzoni, Stefano (3)
Abramowicz, Konrad, ... (2)
Zieminska, Kasia (2)
van Bodegom, Peter M ... (2)
Schulze, Ernst-Detle ... (2)
visa fler...
Aakala, Tuomas (1)
Diaz, Sandra (1)
Ostonen, Ivika (1)
Tedersoo, Leho (1)
Ali, Arshad (1)
Bond-Lamberty, Ben (1)
Ciais, Philippe (1)
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Milberg, Per, 1959- (1)
Isaac, Marney (1)
Lewis, Simon L. (1)
Phillips, Oliver L. (1)
Smith, Benjamin (1)
Jackson, Robert B. (1)
Reichstein, Markus (1)
Stocker, Benjamin D. (1)
Zaehle, Sönke (1)
Hickler, Thomas (1)
Rogers, Alistair (1)
Pakeman, Robin J. (1)
Poschlod, Peter (1)
Dainese, Matteo (1)
Ruiz-Peinado, Ricard ... (1)
Wellstein, Camilla (1)
Gross, Nicolas (1)
Violle, Cyrille (1)
Björkman, Anne, 1981 (1)
Rillig, Matthias C. (1)
Tappeiner, Ulrike (1)
MARQUES, MARCIA (1)
Jactel, Hervé (1)
Castagneyrol, Bastie ... (1)
Scherer-Lorenzen, Mi ... (1)
van der Plas, Fons (1)
Cromsigt, Joris (1)
Beer, Christian (1)
Sauquet, Hervé (1)
Jenkins, Thomas (1)
Hellström, Lars, 197 ... (1)
Boeckx, Pascal (1)
Estiarte, Marc (1)
visa färre...
Lärosäte
Umeå universitet (11)
Stockholms universitet (4)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Mälardalens universitet (1)
Linköpings universitet (1)
visa fler...
Karlstads universitet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy