SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fan Peng) ;lar1:(cth)"

Sökning: WFRF:(Fan Peng) > Chalmers tekniska högskola

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Chen, Huang, et al. (författare)
  • A portable micro glucose sensor based on copper-based nanocomposite structure
  • 2019
  • Ingår i: New Journal of Chemistry. - : Royal Society of Chemistry (RSC). - 1369-9261 .- 1144-0546. ; 43:20, s. 7806-7813
  • Tidskriftsartikel (refereegranskat)abstract
    • Precisely detecting the concentration of glucose in the human body is an attractive way to prevent or treat diabetes. Portable glucose sensors with non-enzymatic catalytic materials have received great attention in recent years. Herein, a facile strategy for fabricating a high-performance electrochemical sensor is proposed. A non-enzymatic three-electrode integrated glucose sensor device based on CuO nano-coral arrays/nanoporous Cu (NCA/NPC) is designed and fabricated. The portable NCA/NPC glucose sensor device exhibits high catalytic activity for glucose. The great performance of the NCA/NPC glucose sensor device derives from the excellent conductivity of the NPC substrate and the high electrocatalytic activity of CuO nano-coral arrays. This device exhibits a high sensitivity of 1621 μA mM -1 cm -2 in the linear range of 0.0005-5.0 mM, low detection limit of 200 nM (S/N = 3), fast response time of 3 s, good anti-interference performance, excellent repeatability and considerable stability for glucose detection. This work will certainly provide an efficient structure and proper catalytic material choices for future non-enzymatic glucose sensors.
  •  
4.
  • Fan, Jin, et al. (författare)
  • Design of Novel Flat Bend Crossed Dipole for Wideband Phased Array Feed Applications
  • 2019
  • Ingår i: 2019 International Symposium on Antennas and Propagation, ISAP 2019 - Proceedings.
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a novel Phased Array Feed (PAF) element based on flat bend crossed dipole fed by 50-Ohm coaxial line. The PAF element is dual-polarized and made from all-metal to minimize Ohmic losses and simplify cryogenic integration. It is optimized for 4- 8 GHz band aiming to possible later integration in the SKA pathfinder PHAROS2. The proposed design can also be a good element candidate of PAF for the Five hundred meter Aperture Spherical Telescope (FAST) and Qi Tai Telescope (QTT) as well as other large radio telescopes.
  •  
5.
  • Fan, Jin, et al. (författare)
  • Design of Octave-bandwidth Phased Array Feed for Large Radio Telescope
  • 2019
  • Ingår i: 13th European Conference on Antennas and Propagation, EuCAP 2019.
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents design scenarios of Octave-bandwidth Phase Array Feed (PAF) based on a novel wideband dual polarized tightly-fed Bowtie antenna element. The PAF is optimized for the 4 - 8GHz band aiming to possible later integration in the SKA pathfinder PHAROS2. The proposed design can be a good candidate of PAF for the Five hundred meter Aperture Spherical Telescope (FAST) and Qi Tai Telescope (QTT) as well as other large radio telescopes.
  •  
6.
  • Fan, Jin, et al. (författare)
  • Development of wideband orthomode transducers for FAST cryogenic receiver system
  • 2020
  • Ingår i: Research in Astronomy and Astrophysics. - : IOP Publishing. - 1674-4527. ; 20:5
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the design, construction, and performance of the wideband orthomode transducers (OMTs) for the L- (1.2-1.8 GHz), the S- (2-3 GHz) and the P- (0.56-1.12 GHz) band receiver systems of the Five-hundred-meter Aperture Spherical radio Telescope (FAST). These OMTs operate at the cryogenic temperature of 70K to reduce their thermal noise contribution to the receiver chains. The development on the FAST L- and S-band quad-ridged waveguide (QRWG) OMTs is carried out based on the theoretical mode analysis. In view of the miniaturization of FAST cryogenic receiver system at P-band, a novel wideband compact bowtie dipole OMT is designed with an octave bandwidth as well as a length of only quarter wavelength. The proposed L-, S- and P-band OMTs are designed and optimized by using Ansys High Frequency Structure Simulator (HFSS), and then manufactured, tested at room temperature. Measurement of FAST cryogenic receiver system noise is also performed with the L-, S- and P-band OMTs installed. The measured results fully comply with the design specifications.
  •  
7.
  • Fan, Qunping, et al. (författare)
  • 10.13% Efficiency All-Polymer Solar Cells Enabled by Improving the Optical Absorption of Polymer Acceptors
  • 2020
  • Ingår i: Solar RRL. - : Wiley. - 2367-198X. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The limited light absorption capacity for most polymer acceptors hinders the improvement of the power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs). Herein, by simultaneously increasing the conjugation of the acceptor unit and enhancing the electron-donating ability of the donor unit, a novel narrow-bandgap polymer acceptor PF3-DTCO based on an A–D–A-structured acceptor unit ITIC16 and a carbon–oxygen (C–O)-bridged donor unit DTCO is developed. The extended conjugation of the acceptor units from IDIC16 to ITIC16 results in a red-shifted absorption spectrum and improved absorption coefficient without significant reduction of the lowest unoccupied molecular orbital energy level. Moreover, in addition to further broadening the absorption spectrum by the enhanced intramolecular charge transfer effect, the introduction of C–O bridges into the donor unit improves the absorption coefficient and electron mobility, as well as optimizes the morphology and molecular order of active layers. As a result, the PF3-DTCO achieves a higher PCE of 10.13% with a higher short-circuit current density (Jsc) of 15.75 mA cm−2 in all-PSCs compared with its original polymer acceptor PF2-DTC (PCE = 8.95% and Jsc = 13.82 mA cm−2). Herein, a promising method is provided to construct high-performance polymer acceptors with excellent optical absorption for efficient all-PSCs.
  •  
8.
  • Fan, Qunping, 1989, et al. (författare)
  • High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor
  • 2021
  • Ingår i: Science in China Series B. - : Springer Nature. - 1674-7291 .- 1869-1870. ; 64, s. 1380-1388
  • Tidskriftsartikel (refereegranskat)abstract
    • Anon-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells (all-PSCs), despite a low power conversion efficiency (PCE) caused by its narrow absorption spectra. Herein, a novel non-fully conjugated polymer acceptor PFY-2TS with a low bandgap of similar to 1.40 eV was developed, via polymerizing a large pi-fused small molecule acceptor (SMA) building block (namely YBO) with a non-conjugated thioalkyl linkage. Compared with its precursor YBO, PFY-2TS retains a similar low bandgap but a higher LUMO level. Moreover, compared with the structural analog of YBO-based fully conjugated polymer acceptor PFY-DTC, PFY-2TS shows similar absorption spectrum and electron mobility, but significantly different molecular crystallinity and aggregation properties, which results in optimal blend morphology with a polymer donor PBDB-T and better device physical processes in all-PSCs. As a result, PFY-2TS-based all-PSCs achieved a PCE of 12.31% with a small energy loss of 0.56 eV enabled by the reduced non-radiative energy loss (0.24 eV), which is better than that of 11.08% for the PFY-DTC-based ones. Our work clearly demonstrated that non-fully conjugated polymers as a new class of acceptor materials are very promising for the development of high-performance all-PSCs.
  •  
9.
  • Fan, Qunping, 1989, et al. (författare)
  • Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation
  • 2020
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 13:12, s. 5017-5027
  • Tidskriftsartikel (refereegranskat)abstract
    • Obtaining both high open-circuit voltage (V-oc) and short-circuit current density (J(sc)) has been a major challenge for efficient all-polymer solar cells (all-PSCs). Herein, we developed a polymer acceptor PF5-Y5 with excellent optical absorption capability (onset extending to similar to 880 nm and maximum absorption coefficient exceeding 105 cm(-1) in a film), high electron mobility (3.18 x 10(3) cm(2) V-1 s(-1)) and high LUMO level (-3.84 eV) to address such a challenge. As a result, the PBDB-T:PF5-Y5-based all-PSCs achieved a high power conversion efficiency of up to 14.45% with both a high Voc (0.946 V) and a high Jsc (20.65 mA cm(-2)), due to the high and broad absorption coverage, small energy loss (0.57 eV) and efficient charge separation and transport in the device, which are among the best values in the all-PSC field. In addition, the all-PSC shows a similar to 15% improvement in PCE compared to its counterpart small molecule acceptor (Y5)-based device. Our results suggest that PF5-Y5 is a very promising polymer acceptor candidate for applications in efficient all-PSCs.
  •  
10.
  • Pan, Wenwu, et al. (författare)
  • Photoluminescence of InGaAs/GaAsBi/InGaAs type-II quantum wells grown by gas source molecular beam epitaxy
  • 2017
  • Ingår i: Semiconductor Science and Technology. - : IOP Publishing. - 1361-6641 .- 0268-1242. ; 32:1
  • Tidskriftsartikel (refereegranskat)abstract
    • InxGa1-xAs/GaAs1-yBiy/InxGa1-xAs (0.20 ≤x ≤0.22, 0.035 ≤y ≤0.045) quantum wells (QWs) were grown on GaAs substrates by gas source molecular beam epitaxy for realizing the type-II band edge line-up. Both type-I and type-II transitions were observed in the Bi containing W QWs and the photoluminescence intensity was enhanced in the sample with a high Bi content, which is mainly due to the improvement of carrier confinement. The 8 band k • p model was used to analyze the electronic properties in the QWs and the calculated transition energies fit well with the experiment results. Our study shows that the proposed type-II QW is a promising candidate for realizing GaAs-based near infrared light emitting devices near 1.3 μm
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy