SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fani Melpomeni) ;conttype:(refereed)"

Sökning: WFRF:(Fani Melpomeni) > Refereegranskat

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ambrosini, Valentina, et al. (författare)
  • Consensus on molecular imaging and theranostics in neuroendocrine neoplasms
  • 2021
  • Ingår i: European Journal of Cancer. - : Elsevier. - 0959-8049 .- 1879-0852. ; 146, s. 56-73
  • Forskningsöversikt (refereegranskat)abstract
    • Nuclear medicine plays an increasingly important role in the management neuroendocrine neoplasms (NEN). Somatostatin analogue (SSA)-based positron emission tomography/computed tomography (PET/CT) and peptide receptor radionuclide therapy (PRRT) have been used in clinical trials and approved by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA). European Association of Nuclear Medicine (EANM) Focus 3 performed a multidisciplinary Delphi process to deliver a balanced perspective on molecular imaging and radionuclide therapy in well-differentiated neuroendocrine tumours (NETs). NETs form in cells that interact with the nervous system or in glands that produce hormones. These cells, called neuroendocrine cells, can be found throughout the body, but NETs are most often found in the abdomen, especially in the gastrointestinal tract. These tumours may also be found in the lungs, pancreas and adrenal glands. In addition to being rare, NETs are also complex and may be difficult to diagnose. Most NETs are non-functioning; however, a minority present with symptoms related to hypersecretion of bioactive compounds. NETs often do not cause symptoms early in the disease process. When diagnosed, substantial number of patients are already found to have metastatic disease. Several societies' guidelines address Neuroendocrine neoplasms (NENs) management; however, many issues are still debated, due to both the difficulty in acquiring strong clinical evidence in a rare and heterogeneous disease and the different availability of diagnostic and therapeutic options across countries. EANM Focus 3 reached consensus on employing 68gallium-labelled somatostatin analogue ([68Ga]Ga-DOTA-SSA)-based PET/CT with diagnostic CT or magnetic resonance imaging (MRI) for unknown primary NET detection, metastatic NET, NET staging/restaging, suspected extra-adrenal pheochromocytoma/paraganglioma and suspected paraganglioma. Consensus was reached on employing 18fluorine-fluoro-2-deoxyglucose ([18F]FDG) PET/CT in neuroendocrine carcinoma, G3 NET and in G1-2 NET with mismatched lesions (CT-positive/[68Ga]Ga-DOTA-SSA-negative). Peptide receptor radionuclide therapy (PRRT) was recommended for second line treatment for gastrointestinal NET with [68Ga]Ga-DOTA-SSA uptake in all lesions, in G1/G2 NET at disease progression, and in a subset of G3 NET provided all lesions are positive at [18F]FDG and [68Ga]Ga-DOTA-SSA. PRRT rechallenge may be used for in patients with stable disease for at least 1 year after therapy completion. An international consensus is not only a prelude to a more standardised management across countries but also serves as a guide for the direction to follow when designing new research studies.
  •  
2.
  • Eigler, Christopher, et al. (författare)
  • Radiolabeled Somatostatin Receptor Antagonist Versus Agonist for Peptide Receptor Radionuclide Therapy in Patients with Therapy-Resistant Meningioma: PROMENADE Phase 0 Study
  • 2024
  • Ingår i: JOURNAL OF NUCLEAR MEDICINE. - 0161-5505 .- 1535-5667. ; 65:4, s. 573-579
  • Tidskriftsartikel (refereegranskat)abstract
    • Our primary aim was to compare the therapeutic index (tumor-to- bone marrow and tumor -to -kidney absorbed -dose ratios) of the new radiolabeled somatostatin receptor antagonist [ 177 Lu]Lu-DOTA-JR11 with the established radiolabeled somatostatin receptor agonist [ 177 Lu]Lu-DOTATOC in the same patients with progressive, standard therapy -refractory meningioma. Methods: In this prospective, singlecenter, open -label phase 0 study (NCT04997317), 6 consecutive patients were included: 3 men and 3 women (mean age, 63.5 y). Patients received 6.9-7.3 GBq (standard injected radioactivity) of [ 177 Lu]Lu-DOTATOC followed by 3.3-4.9 GBq (2 GBq/m 2 3 body surface area) of [ 177 Lu]Lu-DOTA-JR11 at an interval of 10 6 1 wk. In total, 1 [ 177 Lu]Lu-DOTATOC and 2-3 [ 177 Lu]Lu-DOTA-JR11 treatment cycles were performed. Quantitative SPECT/CT was done at approximately 24, 48, and 168 h after injection of both radiopharmaceuticals to calculate meningioma and organ absorbed doses as well as tumor -to -organ absorbed -dose ratios (3 -dimensional segmentation approach for meningioma, kidneys, liver, bone marrow, and spleen). Results: The median of the meningioma absorbed dose of 1 treatment cycle was 3.4 Gy (range, 0.8-10.2 Gy) for [ 177 Lu]Lu-DOTATOC and 11.5 Gy (range, 4.7-22.7 Gy) for [ 177 Lu]Lu-DOTA-JR11. The median bone marrow and kidney absorbed doses after 1 treatment cycle were 0.11 Gy (range, 0.05-0.17 Gy) and 2.7 Gy (range, 1.3- 5.3 Gy) for [ 177 Lu]Lu-DOTATOC and 0.29 Gy (range, 0.16-0.39 Gy) and 3.3 Gy (range, 1.6-5.9 Gy) for [ 177 Lu]Lu-DOTA-JR11, resulting in a 1.4 (range, 0.9-1.9) times higher median tumor-to-bone marrow absorbed -dose ratio and a 2.9 (range, 2.0-4.8) times higher median tumor -to -kidney absorbed -dose ratio with [ 177 Lu]Lu-DOTA-JR11. According to the Common Terminology Criteria for Adverse Events version 5.0, 2 patients developed reversible grade 2 lymphopenia after 1 cycle of [ 177 Lu]Lu-DOTATOC. Afterward, 2 patients developed reversible grade 3 lymphopenia and 1 patient developed reversible grade 3 lymphopenia and neutropenia after 2-3 cycles of [ 177 Lu]Lu- DOTA-JR11. No grade 4 or 5 adverse events were observed at 15 mo or more after the start of therapy. The disease control rate was 83% (95% CI, 53%-100%) at 12 mo or more after inclusion. Conclusion: Treatment with 1 cycle of [ 177 Lu]Lu-DOTA-JR11 showed 2.2-5.7 times higher meningioma absorbed doses and a favorable therapeutic index compared with [ 177 Lu]Lu-DOTATOC after injection of 1.4-2.1 times lower activities. The first efficacy results demonstrated a high disease control rate with an acceptable safety profile in the standard therapy for refractory meningioma patients. Therefore, larger studies with [ 177 Lu]Lu-DOTA-JR11 are warranted in meningioma patients.
  •  
3.
  • Fani, Melpomeni, et al. (författare)
  • Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms
  • 2017
  • Ingår i: Pharmaceuticals. - : MDPI AG. - 1424-8247. ; 10:1
  • Forskningsöversikt (refereegranskat)abstract
    • Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr), other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R) is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2)/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics) of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy