SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Farrer Matthew J.) ;hsvcat:3"

Sökning: WFRF:(Farrer Matthew J.) > Medicin och hälsovetenskap

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Li-San, et al. (författare)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
2.
  • Escott-Price, Valentina, et al. (författare)
  • Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:6, s. e94661-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. Principal Findings: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4x10(-6)) and 14 (IGHV1-67 p = 7.9x10(-8)) which indexed novel susceptibility loci. Significance: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
  •  
3.
  • Jones, Lesley, et al. (författare)
  • Convergent genetic and expression data implicate immunity in Alzheimer's disease
  • 2015
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 11:6, s. 658-671
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Late-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis. Methods: The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results: ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 X 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 X 10(-11)), cholesterol transport (P = 2.96 X 10(-9)), and proteasome-ubiquitin activity (P = 1.34 X 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05). Conclusions: The immime response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics.
  •  
4.
  • Vilarino-Gueell, Carles, et al. (författare)
  • VPS35 Mutations in Parkinson Disease
  • 2011
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 89:1, s. 162-167
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 +/- 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.
  •  
5.
  • Elbaz, Alexis, et al. (författare)
  • Independent and Joint Effects of the MAPT and SNCA Genes in Parkinson Disease
  • 2011
  • Ingår i: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 69:5, s. 778-792
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta-analysis of individual data from case-control studies participating in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) consortium. Methods: Participants of Caucasian ancestry were genotyped for a total of 4 SNCA (rs2583988, rs181489, rs356219, rs11931074) and 2 MAPT (rs1052553, rs242557) single nucleotide polymorphism (SNPs). Individual and joint effects of SNCA and MAPT SNPs were investigated using fixed- and random-effects logistic regression models. Interactions were studied on both a multiplicative and an additive scale, and using a case-control and case-only approach. Results: Fifteen GEO-PD sites contributed a total of 5,302 cases and 4,161 controls. All 4 SNCA SNPs and the MAPT H1-haplotype-defining SNP (rs1052553) displayed a highly significant marginal association with PD at the significance level adjusted for multiple comparisons. For SNCA, the strongest associations were observed for SNPs located at the 30 end of the gene. There was no evidence of statistical interaction between any of the 4 SNCA SNPs and rs1052553 or rs242557, neither on the multiplicative nor on the additive scale. Interpretation: This study confirms the association between PD and both SNCA SNPs and the H1 MAPT haplotype. It shows, based on a variety of approaches, that the joint action of variants in these 2 loci is consistent with independent effects of the genes without additional interacting effects. ANN NEUROL 2011; 69: 778-792
  •  
6.
  • Heckman, Michael G., et al. (författare)
  • Population-specific Frequencies for LRRK2 Susceptibility Variants in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) Consortium
  • 2013
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185. ; 28:12, s. 1740-1744
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundVariants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease susceptibility displays many features that reflect the nature of complex, late-onset sporadic disorders like Parkinson's disease. MethodsThe Genetic Epidemiology of Parkinson's Disease Consortium recently performed the largest genetic association study for variants in the leucine-rich repeat kinase 2 gene across 23 different sites in 15 countries. ResultsHerein, we detail the allele frequencies for the novel risk factors (p.A419V and p.M1646T) and the protective haplotype (p.N551K-R1398H-K1423K) nominated in the original publication. Simple population allele frequencies not only can provide insight into the clinical relevance of specific variants but also can help genetically define patient groups. ConclusionsEstablishing individual patient-based genomic susceptibility profiles that incorporate both risk factors and protective factors will determine future diagnostic and treatment strategies. (c) 2013 International Parkinson and Movement Disorder Society
  •  
7.
  • Ross, Owen A., et al. (författare)
  • Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case-control study
  • 2011
  • Ingår i: Lancet Neurology. - 1474-4465. ; 10:10, s. 898-908
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in relation to risk of Parkinson's disease (PD) has not been assessed systematically. We therefore assessed the frequency of LRRK2 exonic variants in individuals with and without PD, to investigate the role of the variants in PD susceptibility. Methods LRRK2 was genotyped in patients with PD and controls from three series (white, Asian, and Arab-Berber) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Genotyping was done for exonic variants of LRRK2 that were identified through searches of literature and the personal communications of consortium members. Associations with PD were assessed by use of logistic regression models. For variants that had a minor allele frequency of 0.5% or greater, single variant associations were assessed, whereas for rarer variants information was collapsed across variants. Findings 121 exonic LRRK2 variants were assessed in 15 540 individuals: 6995 white patients with PD and 5595 controls, 1376 Asian patients and 962 controls, and 240 Arab-Berber patients and 372 controls. After exclusion of carriers of known pathogenic mutations, new independent risk associations were identified for polymorphic variants in white individuals (M1646T, odds ratio 1.43, 95% CI 1.15-1.78; p=0.0012) and Asian individuals (A419V, 2.27, 1.35-3.83; p=0.0011). A protective haplotype (N551K-R1398H-K1423K) was noted at a frequency greater than 5% in the white and Asian series, with a similar finding in the Arab-Berber series (combined odds ratio 0.82, 0.72-0.94; p=0.0043). Of the two previously reported Asian risk variants, G2385R was associated with disease (1.73, 1.20-2.49; p=0.0026), but no association was noted for R1628P (0.62, 0.36-1.07; p=0.087). In the Arab-Berber series, Y2189C showed potential evidence of risk association with PD (4.48, 133-15.09; p=0.012). Interpretation The results for LRRK2 show that several rare and common genetic variants in the same gene can have independent effects on disease risk. LRRK2, and the pathway in which it functions, is important in the cause and pathogenesis of PD in a greater proportion of patients with this disease than previously believed. These results will help discriminate those patients who will benefit most from therapies targeted at LRRK2 pathogenic activity. Funding Michael J Fox Foundation and National Institutes of Health.
  •  
8.
  • Ross, Owen A., et al. (författare)
  • Genomic investigation of alpha-synuclein multiplication and parkinsonism
  • 2008
  • Ingår i: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 63:6, s. 743-750
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Copy number variation is a common polymorphic phenomenon within the human genome. Although the majority of these events are non-deleterious they can also be highly pathogenic. Herein we characterize five families with parkinsonism that have been identified to harbor multiplication of the chromosomal 4q21 locus containing the a-synuclein gene (SNCA). Methods: A methodological approach using fluorescent in situ hybridization and Affymetrix (Santa Clara, CA) 250K SNP microarrays was used to characterize the multiplication in each family and to identify the genes encoded within the region. The telomeric and centromeric breakpoints of each family were further narrowed using semiquantitative polymerase chain reaction with microsatellite markers and then screened for transposable repeat elements. Results: The severity of clinical presentation is correlated with SNCA dosage and does not appear to be overtly affected by the presence of other genes in the multiplicated region. With the exception of the Lister kindred, in each family the multiplication event appears de novo. The type and position of Alu/LINE repeats are also different at each breakpoint. Microsatellite analysis demonstrates two genomic mechanisms are responsible for chromosome 4q21 multiplications, including both SNCA duplication and recombination. Interpretation: SNCA dosage is responsible for parkinsonism, autonomic dysfunction, and dementia observed within each family. We hypothesize dysregulated expression of wild-type (alpha-synuclein results in parkinsonism and may explain the recent association of common SNCA variants in sporadic Parkinson's disease. SNCA genomic duplication results from intraallelic (segmental duplication) or interallelic recombination with unequal crossing over, whereas both mechanisms appear to be required for genomic SNCA triplication.
  •  
9.
  • Puschmann, Andreas, et al. (författare)
  • First neuropathological description of a patient with Parkinson's disease and LRRK2 p.N1437H mutation.
  • 2012
  • Ingår i: Parkinsonism & Related Disorders. - : Elsevier BV. - 1873-5126 .- 1353-8020. ; 18:4, s. 332-338
  • Tidskriftsartikel (refereegranskat)abstract
    • The c.4309A>C mutation in the LRRK2 gene (LRRK2 p.N1437H) has recently been reported as the seventh pathogenic LRRK2 mutation causing monogenic Parkinson's disease (PD). So far, only two families worldwide have been identified with this mutation. By screening DNA from seven brains of PD patients, we found one individual with seemingly sporadic PD and LRRK2 p.N1437H mutation. Clinically, the patient had levodopa-responsive PD with tremor, and developed severe motor fluctuations during a disease duration of 19 years. There was severe and painful ON-dystonia, and severe depression with suicidal thoughts during OFF. In the advanced stage, cognition was slow during motor OFF, but there was no noticeable cognitive decline. There were no signs of autonomic nervous system dysfunction. Bilateral deep brain stimulation of the subthalamic nucleus had unsatisfactory results on motor symptoms. The patient committed suicide. Neuropathological examination revealed marked cell loss and moderate alpha-synuclein positive Lewy body pathology in the brainstem. There was sparse Lewy pathology in the cortex. A striking finding was very pronounced ubiquitin-positive pathology in the brainstem, temporolimbic regions and neocortex. Ubiquitin positivity was most pronounced in the white matter, and was out of proportion to the comparatively weaker alpha-synuclein immunoreactivity. Immunostaining for tau was mildly positive, revealing non-specific changes, but staining for TDP-43 and FUS was entirely negative. The distribution and shape of ubiquitin-positive lesions in this patient differed from the few previously described patients with LRRK2 mutations and ubiquitin pathology, and the ubiquitinated protein substrate remains undefined.
  •  
10.
  • Puschmann, Andreas, et al. (författare)
  • Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism
  • 2017
  • Ingår i: Brain. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 140:1, s. 98-117
  • Tidskriftsartikel (refereegranskat)abstract
    • SEE GANDHI AND PLUN-FAVREAU DOI101093/AWW320 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: It has been postulated that heterozygous mutations in recessive Parkinson's genes may increase the risk of developing the disease. In particular, the PTEN-induced putative kinase 1 (PINK1) p.G411S (c.1231G>A, rs45478900) mutation has been reported in families with dominant inheritance patterns of Parkinson's disease, suggesting that it might confer a sizeable disease risk when present on only one allele. We examined families with PINK1 p.G411S and conducted a genetic association study with 2560 patients with Parkinson's disease and 2145 control subjects. Heterozygous PINK1 p.G411S mutations markedly increased Parkinson's disease risk (odds ratio = 2.92, P = 0.032); significance remained when supplementing with results from previous studies on 4437 additional subjects (odds ratio = 2.89, P = 0.027). We analysed primary human skin fibroblasts and induced neurons from heterozygous PINK1 p.G411S carriers compared to PINK1 p.Q456X heterozygotes and PINK1 wild-type controls under endogenous conditions. While cells from PINK1 p.Q456X heterozygotes showed reduced levels of PINK1 protein and decreased initial kinase activity upon mitochondrial damage, stress-response was largely unaffected over time, as expected for a recessive loss-of-function mutation. By contrast, PINK1 p.G411S heterozygotes showed no decrease of PINK1 protein levels but a sustained, significant reduction in kinase activity. Molecular modelling and dynamics simulations as well as multiple functional assays revealed that the p.G411S mutation interferes with ubiquitin phosphorylation by wild-type PINK1 in a heterodimeric complex. This impairs the protective functions of the PINK1/parkin-mediated mitochondrial quality control. Based on genetic and clinical evaluation as well as functional and structural characterization, we established p.G411S as a rare genetic risk factor with a relatively large effect size conferred by a partial dominant-negative function phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (14)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Ross, Owen A. (11)
Puschmann, Andreas (10)
Wszolek, Zbigniew K. (10)
Silburn, Peter A. (7)
Mellick, George D. (7)
Nilsson, Christer (6)
visa fler...
Van Broeckhoven, Chr ... (6)
Aasly, Jan O. (6)
Brice, Alexis (6)
Ioannidis, John P. A ... (5)
Wirdefeldt, Karin (5)
Hattori, Nobutaka (5)
Annesi, Grazia (5)
Jasinska-Myga, Barba ... (5)
Maraganore, Demetriu ... (5)
Uitti, Ryan J (5)
Lesage, Suzanne (4)
Lambert, Jean-Charle ... (4)
Rogaeva, Ekaterina (4)
Chartier-Harlin, Mar ... (4)
Theuns, Jessie (4)
Elbaz, Alexis (4)
Klein, Christine (4)
Cruchaga, Carlos (3)
Hakonarson, Hakon (3)
Buxbaum, Joseph D (3)
Haines, Jonathan L (3)
Pericak-Vance, Marga ... (3)
Schellenberg, Gerard ... (3)
Lopez, Oscar L. (3)
Park, Sung-Sup (3)
Lunetta, Kathryn L (3)
Yu, Lei (3)
Bennett, David A (3)
Blacker, Deborah (3)
St George-Hyslop, Pe ... (3)
Dickson, Dennis W (3)
Kachergus, Jennifer ... (3)
Goate, Alison M. (3)
Kauwe, John S K (3)
Crane, Paul K. (3)
Kamboh, M. Ilyas (3)
Brighina, Laura (3)
Lin, Chiao-Feng (3)
Kukull, Walter A. (3)
Montine, Thomas J. (3)
Mayeux, Richard (3)
Farrer, Lindsay A. (3)
Larson, Eric B. (3)
Xiromerisiou, Georgi ... (3)
visa färre...
Lärosäte
Lunds universitet (11)
Karolinska Institutet (7)
Uppsala universitet (2)
Stockholms universitet (2)
Göteborgs universitet (1)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy