SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Favre P) srt2:(2015-2019);conttype:(refereed)"

Sökning: WFRF:(Favre P) > (2015-2019) > Refereegranskat

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antonova, M., et al. (författare)
  • Synchronization of the distributed readout frontend electronics of the Baby MIND detector
  • 2017
  • Ingår i: 2017 XXVI International Scientific Conference Electronics (ET). - : IEEE. - 9781538617533
  • Konferensbidrag (refereegranskat)abstract
    • Baby MIND is a new downstream muon range detector for the WGASCI experiment. This article discusses the distributed readout system and its timing requirements. The paper presents the design of the synchronization subsystem and the results of its test.
  •  
2.
  • Antonova, M., et al. (författare)
  • Baby MIND : a magnetized segmented neutrino detector for the WAGASCI experiment
  • 2017
  • Ingår i: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221 .- 1748-0221. ; 12:07, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280’s measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.
  •  
3.
  • Antonova, M., et al. (författare)
  • Baby MIND : a magnetized segmented neutrino detector for the WAGASCI experiment
  • 2017
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. Anear detector complex (ND280) is located 280m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.
  •  
4.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
5.
  • Coutens, A., et al. (författare)
  • The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • Formamide (NH2CHO) has previously been detected in several star-forming regions and is thought to be a precursor for different prebiotic molecules. Its formation mechanism is still debated, however. Observations of formamide, related species, and their isopotologues may provide useful clues to the chemical pathways leading to their formation. The Protostellar Interferometric Line Survey (PILS) represents an unbiased, high angular resolution and sensitivity spectral survey of the low-mass protostellar binary IRAS 16293-2422 with the Atacama Large Millimeter/submillimeter Array (ALMA). For the first time, we detect the three singly deuterated forms of NH2CHO (NH2CDO, cis-and trans-NHDCHO), as well as DNCO towards the component B of this binary source. The images reveal that the different isotopologues are all present in the same region. Based on observations of the 13C isotopologues of formamide and a standard 12C/13C ratio, the deuterium fractionation is found to be similar for the three different forms with a value of about 2%. The DNCO/HNCO ratio is also comparable to the D/H ratio of formamide (~1%). These results are in agreement with the hypothesis that NH2CHO and HNCO are chemically related through grain-surface formation.
  •  
6.
  •  
7.
  • Lykke, J. M., et al. (författare)
  • The ALMA-PILS survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597, s. A53-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. One of the open questions in astrochemistry is how complex organic and prebiotic molecules are formed. The unsurpassed sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) takes the quest for discovering molecules in the warm and dense gas surrounding young stars to the next level. Aims. Our aim is to start the process of compiling an inventory of oxygen-bearing complex organic molecules toward the solar-type Class 0 protostellar binary IRAS 16293-2422 from an unbiased spectral survey with ALMA, Protostellar Interferometric Line Survey (PILS). Here we focus on the new detections of ethylene oxide (c-C2H4O), acetone (CH3COCH3), and propanal (C2H5CHO). Methods. With ALMA, we surveyed the spectral range from 329 to 363 GHz at 0.5? (60 AU diameter) resolution. Using a simple model for the molecular emission in local thermodynamical equilibrium, the excitation temperatures and column densities of each species were constrained. Results. We successfully detect propanal (44 lines), ethylene oxide (20 lines) and acetone (186 lines) toward one component of the protostellar binary, IRAS 16293B. The high resolution maps demonstrate that the emission for all investigated species originates from the compact central region close to the protostar. This, along with a derived common excitation temperature of Tex ? 125 K, is consistent with a coexistence of these molecules in the same gas. Conclusions. The observations mark the first detections of acetone, propanal and ethylene oxide toward a low-mass protostar. The relative abundance ratios of the two sets of isomers, a CH3COCH3/C2H5CHO ratio of 8 and a CH3CHO/c-C2H4O ratio of 12, are comparable to previous observations toward high-mass protostars. The majority of observed abundance ratios from these results as well as those measured toward high-mass protostars are up to an order of magnitude above the predictions from chemical models. This may reflect either missing reactions or uncertain rates in the chemical networks. The physical conditions, such as temperatures or densities, used in the models, may not be applicable to solar-type protostars either.
  •  
8.
  •  
9.
  • van der Wiel, M. H. D., et al. (författare)
  • The ALMA-PILS survey: gas dynamics in IRAS 16293-2422 and the connection between its two protostars
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 626
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The majority of stars form in binary or higher order systems. The evolution of each protostar in a multiple system may start at different times and may progress differently. The Class 0 protostellar system IRAS 16293-2422 contains two protostars, "A" and "B", separated by similar to 600 au and embedded in a single, 10(4) au scale envelope. Their relative evolutionary stages have been debated. Aims. We aim to study the relation and interplay between the two protostars A and B at spatial scales of 60 au up to similar to 10(3) au. Methods. We selected molecular gas line transitions of the species CO, H2CO, HCN, CS, SiO, and C2H from the ALMA-PILS spectral imaging survey (329-363 GHz) and used them as tracers of kinematics, density, and temperature in the IRAS 16293-2422 system. The angular resolution of the PILS data set allows us to study these quantities at a resolution of 0.5 '' (60 au at the distance of the source). Results. Line-of-sight velocity maps of both optically thick and optically thin molecular lines reveal: (i) new manifestations of previously known outflows emanating from protostar A; (ii) a kinematically quiescent bridge of dust and gas spanning between the two protostars, with an inferred density between 4 x 10(4) cm(-3) and similar to 3 x 10(7) cm(-3); and (iii) a separate, straight filament seemingly connected to protostar B seen only in C2H, with a flat kinematic signature. Signs of various outflows, all emanating from source A, are evidence of high-density and warmer gas; none of them coincide spatially and kinematically with the bridge. Conclusions. We hypothesize that the bridge arc is a remnant of filamentary substructure in the protostellar envelope material from which protostellar sources A and B have formed. One particular morphological structure appears to be due to outflowing gas impacting the quiescent bridge material. The continuing lack of clear outflow signatures unambiguously associated to protostar B and the vertically extended shape derived for its disk-like structure lead us to conclude that source B may be in an earlier evolutionary stage than source A.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy