SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fazakerley A.) "

Sökning: WFRF:(Fazakerley A.)

  • Resultat 1-10 av 73
  • [1]234567...8Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berthomier, M., et al. (författare)
  • Alfvén : magnetosphere-ionosphere connection explorers
  • 2012
  • Ingår i: Experimental astronomy (Print). - 0922-6435 .- 1572-9508. ; 33:2-3, s. 445-489
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.</p>
  •  
2.
  • Berthomier, M., et al. (författare)
  • Alfven : magnetosphere-ionosphere connection explorers
  • 2012
  • Ingår i: Experimental astronomy (Print). - 0922-6435 .- 1572-9508. ; 33:2-3, s. 445-489
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.</p>
  •  
3.
  • Berthomier, M., et al. (författare)
  • Alfven : magnetosphere-ionosphere connection explorers
  • 2012
  • Ingår i: Experimental astronomy (Print). - Dordrecht : Springer. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 445-489
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.</p>
  •  
4.
  • Andre, M., et al. (författare)
  • Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause
  • 2001
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 19:12-okt, s. 1471-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Broadband waves around the lower hybrid frequency (around 10 Hz) near the magnetopause are studied, using the four Cluster satellites. These waves are common at the Earthward edge of the boundary layer, consistent with earlier observations, and can have amplitudes at least up to 5 mV/m. These waves are similar on all four Cluster satellites, i.e. they are likely to be distributed over large areas of the boundary. The strongest electric fields occur during a few seconds, i.e. over distances of a few hundred km in the frame of the moving magnetopause, a scale length comparable to the ion gyroradius. The strongest magnetic oscillations in the same frequency range are typically found in the boundary layer, and across the magnetopause. During an event studied in detail, the magnetopause velocity is consistent with a large-scale depression wave, i.e. an inward bulge of magnetosheath plasma, moving tailward along the nominal magnetopause boundary. Preliminary investigations indicate that a rather flat front side of the large-scale wave is associated with a rather static small-scale electric field, while a more turbulent backside of the large-scale wave is associated with small-scale time varying electric field wave packets.</p>
  •  
5.
  • Lockwood, M, et al. (författare)
  • Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF : relation to reconnection pulses and FTE signatures
  • 2001
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 19:10-12, s. 1613-1640
  • Forskningsöversikt (refereegranskat)abstract
    • <p>We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ([X(GSM), Y(GSM), Z(GSM)] approximate to [2, 7, 9] R(E)). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is well-defined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events cor-relate well with swings of the IMF clock angle (in GSM) to near 90degrees. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvenic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 R(E) in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.</p>
  •  
6.
  • Soucek, J., et al. (författare)
  • EMC Aspects Of Turbulence Heating Observer (THOR) Spacecraft
  • 2016
  • Ingår i: Proceedings Of 2016 Esa Workshop On Aerospace Emc (Aerospace Emc). - Institute of Electrical and Electronics Engineers (IEEE). - 9789292213039
  • Konferensbidrag (refereegranskat)abstract
    • <p>Turbulence Heating ObserveR (THOR) is a spacecraft mission dedicated to the study of plasma turbulence in near-Earth space. The mission is currently under study for implementation as a part of ESA Cosmic Vision program. THOR will involve a single spinning spacecraft equipped with state of the art instruments capable of sensitive measurements of electromagnetic fields and plasma particles. The sensitive electric and magnetic field measurements require that the spacecraft-generated emissions are restricted and strictly controlled; therefore a comprehensive EMC program has been put in place already during the study phase. The THOR study team and a dedicated EMC working group are formulating the mission EMC requirements already in the earliest phase of the project to avoid later delays and cost increases related to EMC. This article introduces the THOR mission and reviews the current state of its EMC requirements.</p>
  •  
7.
  • Soucek, J., et al. (författare)
  • EMC Aspects Of Turbulence Heating Observer (THOR) Spacecraft
  • 2016
  • Ingår i: Proceedings Of 2016 Esa Workshop On Aerospace Emc (Aerospace Emc). - 9789292213039
  • Konferensbidrag (refereegranskat)abstract
    • <p>Turbulence Heating ObserveR (THOR) is a spacecraft mission dedicated to the study of plasma turbulence in near-Earth space. The mission is currently under study for implementation as a part of ESA Cosmic Vision program. THOR will involve a single spinning spacecraft equipped with state of the art instruments capable of sensitive measurements of electromagnetic fields and plasma particles. The sensitive electric and magnetic field measurements require that the spacecraft-generated emissions are restricted and strictly controlled; therefore a comprehensive EMC program has been put in place already during the study phase. The THOR study team and a dedicated EMC working group are formulating the mission EMC requirements already in the earliest phase of the project to avoid later delays and cost increases related to EMC. This article introduces the THOR mission and reviews the current state of its EMC requirements.</p>
  •  
8.
  • Nakamura, R., et al. (författare)
  • Flow bouncing and electron injection observed by Cluster
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - 2169-9380. ; 118:5, s. 2055-2072
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Characteristics of particles and fields in the flow-bouncing region are studied based on multipoint observations from Cluster located at 13-15R(E) downtail during a substorm event around 12:50 UT on 7 September 2007. The Cluster spacecraft were separated by a distance of up to 10,000 km and allowed to determine the mesoscale evolution of the current sheet as well as the development of the dipolarization front. We show that the flow bouncing took place associated with a tailward-directed j x B force in a disturbed current sheet in addition to an enhanced tailward pressure gradient force. Multiple Earthward propagating dipolarization fronts accompanied by enhanced flux of energetic electrons were observed before the flow bouncing. The sequence of events started with a localized dipolarization front and ended with a large scale (&gt;10R(E)) dipolarization front accompanied by a major increase in energetic electrons at all spacecraft and immediately followed by flow bouncing. Multiple dipolarization fronts result in the formation of compressed magnetic field with a plasma bulge bounded by thin ion-scale current layers, a favorable condition for flow bouncing. These observations suggest that to understand the flow bouncing and related acceleration of plasma in the near-Earth tail, both the large-scale MHD properties and the transient and small-scale effect of the plasma interaction with the Earth-dipole field need to be taken into account.</p>
  •  
9.
  • Pedersen, A., et al. (författare)
  • Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7, s. A07S33
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Spacecraft potential measurements by the EFW electric field experiment on the Cluster satellites can be used to obtain plasma density estimates in regions barely accessible to other type of plasma experiments. Direct calibrations of the plasma density as a function of the measured potential difference between the spacecraft and the probes can be carried out in the solar wind, the magnetosheath, and the plasmashere by the use of CIS ion density and WHISPER electron density measurements. The spacecraft photoelectron characteristic ( photoelectrons escaping to the plasma in current balance with collected ambient electrons) can be calculated from knowledge of the electron current to the spacecraft based on plasma density and electron temperature data from the above mentioned experiments and can be extended to more positive spacecraft potentials by CIS ion and the PEACE electron experiments in the plasma sheet. This characteristic enables determination of the electron density as a function of spacecraft potential over the polar caps and in the lobes of the magnetosphere, regions where other experiments on Cluster have intrinsic limitations. Data from 2001 to 2006 reveal that the photoelectron characteristics of the Cluster spacecraft as well as the electric field probes vary with the solar cycle and solar activity. The consequences for plasma density measurements are addressed. Typical examples are presented to demonstrate the use of this technique in a polar cap/lobe plasma.</p>
  •  
10.
  • Apatenkov, S. V., et al. (författare)
  • Conjugate observation of sharp dynamical boundary in the inner magnetosphere by Cluster and DMSP spacecraft and ground network
  • 2008
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 26:9, s. 2771-2780
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We investigate an unusual sharp boundary separating two plasma populations (inner magnetospheric plasma with high fluxes of energetic particles and plasma sheet) observed by the Cluster quartet near its perigee on 16 December 2003. Cluster was in a pearl-on-string configuration at 05:00 MLT and mapped along magnetic field lines to similar to 8-9 R-E in the equatorial plane. It was conjugate to the MIRACLE network and the DMSP F16 spacecraft passed close to Cluster footpoint. The properties of the sharp boundary, repeatedly crossed 7 times by five spacecraft during similar to 10 min, are: (1) upward FAC sheet at the boundary with similar to 30 nA/m(2) current density at Cluster and similar to 2000 nA/m(2) at DMSP; (2) the boundary had an embedded layered structure with different thickness scales, the electron population transition was at similar to 20 km scale at Cluster (&lt;7 km at DMSP), proton population had a scale similar to 100 km, while the FAC sheet thickness was estimated to be similar to 500 km at Cluster (similar to 100 km at DMSP); (3) the boundary propagated in the earthward-eastward direction at similar to 8 km/s in situ (equatorward-eastward similar to 0.8 km/s in ionosphere), and then decelerated and/or stopped. We discuss the boundary formation by the collision of two different plasmas which may include dynamical three-dimensional field-aligned current loops.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 73
  • [1]234567...8Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy