SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fazakerley A.) ;pers:(Rae I. J.)"

Sökning: WFRF:(Fazakerley A.) > Rae I. J.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berthomier, M., et al. (författare)
  • Alfven : magnetosphere-ionosphere connection explorers
  • 2012
  • Ingår i: Experimental astronomy. - Dordrecht : Springer. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 445-489
  • Tidskriftsartikel (refereegranskat)abstract
    • The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.
  •  
2.
  • Forsyth, C., et al. (författare)
  • In situ spatiotemporal measurements of the detailed azimuthal substructure of the substorm current wedge
  • 2014
  • Ingår i: Journal of Geophysical Research: Space Physics. - 2169-9380. ; 119:2, s. 927-946
  • Tidskriftsartikel (refereegranskat)abstract
    • The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere toward dawn and out of the ionosphere toward dusk, linked by a westward electrojet. We use multispacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 January 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft traveled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal substructure on scales of 100km at altitudes of 4000-7000km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120-240s after Cluster 4 at 1300-2000km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction, in contrast to the expected east-west orientation of the preonset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs), we conclude that significant questions remain for the explanation of SCW structuring by BBF-driven wedgelets. Our results therefore represent constraints on future modeling and theoretical frameworks on the generation of the SCW.
  •  
3.
  • Ling, Yiming, et al. (författare)
  • Observations of Kelvin-Helmholtz Waves in the Earth's Magnetotail Near the Lunar Orbit
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:5, s. 3836-3847
  • Tidskriftsartikel (refereegranskat)abstract
    • Kelvin‐Helmholtz waves (KHWs), which have been widely observed at the magnetopause in the region near the Earth, play an essential role in the transport of solar wind plasma and energy into the magnetosphere under dominantly northward interplanetary magnetic field (IMF) conditions. In this study, we present simultaneous observations of KHWs under the northward IMF observed by both the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft in the Earth's magnetotail around the lunar orbit (at X ~ −50RE, Y ~ 30RE, dusk side) and the Geotail in the near‐Earth space (at X ~ −5RE, Y ~ −10RE, dawn side). The KHWs are quantitatively characterized by their dominant period, phase velocity, and wavelength, utilizing wavelet analysis and an approximation of their center‐of‐mass velocity. Our results suggest that the phase velocity and spatial scale of KHWs may increase as they propagate along the boundary layer toward the tail. Alternatively, the differences between the ARTEMIS and Geotail observations may indicate the possibility of dawn‐dusk asymmetry in the excited KHWs in this study. Our results strongly evidence the existence of the development of KHWs in terms of their wave frequency and scale size in the magnetotail and provide insight to the time evolution of KHWs along the magnetopause.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy