SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fazeli G) "

Sökning: WFRF:(Fazeli G)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fullman, N., et al. (författare)
  • Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016
  • 2018
  • Ingår i: Lancet. - : Elsevier BV. - 0140-6736. ; 391:10136, s. 2236-2271
  • Tidskriftsartikel (refereegranskat)abstract
    • Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97.1 (95% UI 95.8-98.1) in Iceland, followed by 96.6 (94.9-97.9) in Norway and 96.1 (94.5-97.3) in the Netherlands, to values as low as 18.6 (13.1-24.4) in the Central African Republic, 19.0 (14.3-23.7) in Somalia, and 23.4 (20.2-26.8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91.5 (89.1-936) in Beijing to 48.0 (43.4-53.2) in Tibet (a 43.5-point difference), while India saw a 30.8-point disparity, from 64.8 (59.6-68.8) in Goa to 34.0 (30.3-38.1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4.8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20.9-point to 17.0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17.2-point to 20.4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle-SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view and subsequent provision of quality health care for all populations. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
3.
  • Hay, S. I., et al. (författare)
  • Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016 : A systematic analysis for the Global Burden of Disease Study 2016
  • 2017
  • Ingår i: The Lancet. - : Lancet Publishing Group. - 0140-6736 .- 1474-547X. ; 390:10100, s. 1260-1344
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). Methods: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE difered from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. Findings: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs ofset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the fve lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. Interpretation: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs ofset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention eforts, and development assistance for health, including fnancial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
4.
  • Vos, T., et al. (författare)
  • Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016
  • 2017
  • Ingår i: Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 390:10100, s. 1211-1259
  • Tidskriftsartikel (refereegranskat)abstract
    • Background As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016. Methods We estimated prevalence and incidence for 328 diseases and injuries and 2982 sequelae, their non-fatal consequences. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between incidence, prevalence, remission, and cause of death rates for each condition. For some causes, we used alternative modelling strategies if incidence or prevalence needed to be derived from other data. YLDs were estimated as the product of prevalence and a disability weight for all mutually exclusive sequelae, corrected for comorbidity and aggregated to cause level. We updated the Socio-demographic Index (SDI), a summary indicator of income per capita, years of schooling, and total fertility rate. GBD 2016 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, low back pain, migraine, age-related and other hearing loss, iron-deficiency anaemia, and major depressive disorder were the five leading causes of YLDs in 2016, contributing 57.6 million (95% uncertainty interval [UI] 40.8-75.9 million [7.2%, 6.0-8.3]), 45.1 million (29.0-62.8 million [5.6%, 4.0-7.2]), 36.3 million (25.3-50.9 million [4.5%, 3.8-5.3]), 34.7 million (23.0-49.6 million [4.3%, 3.5-5.2]), and 34.1 million (23.5-46.0 million [4.2%, 3.2-5.3]) of total YLDs, respectively. Age-standardised rates of YLDs for all causes combined decreased between 1990 and 2016 by 2.7% (95% UI 2.3-3.1). Despite mostly stagnant age-standardised rates, the absolute number of YLDs from non-communicable diseases has been growing rapidly across all SDI quintiles, partly because of population growth, but also the ageing of populations. The largest absolute increases in total numbers of YLDs globally were between the ages of 40 and 69 years. Age-standardised YLD rates for all conditions combined were 10.4% (95% UI 9.0-11.8) higher in women than in men. Iron-deficiency anaemia, migraine, Alzheimer's disease and other dementias, major depressive disorder, anxiety, and all musculoskeletal disorders apart from gout were the main conditions contributing to higher YLD rates in women. Men had higher age-standardised rates of substance use disorders, diabetes, cardiovascular diseases, cancers, and all injuries apart from sexual violence. Globally, we noted much less geographical variation in disability than has been documented for premature mortality. In 2016, there was a less than two times difference in age-standardised YLD rates for all causes between the location with the lowest rate (China, 9201 YLDs per 100 000, 95% UI 6862-11943) and highest rate (Yemen, 14 774 YLDs per 100 000, 11 018-19 228). Interpretation The decrease in death rates since 1990 for most causes has not been matched by a similar decline in age-standardised YLD rates. For many large causes, YLD rates have either been stagnant or have increased for some causes, such as diabetes. As populations are ageing, and the prevalence of disabling disease generally increases steeply with age, health systems will face increasing demand for services that are generally costlier than the interventions that have led to declines in mortality in childhood or for the major causes of mortality in adults. Up-todate information about the trends of disease and how this varies between countries is essential to plan for an adequate health-system response. Copyright (C) The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
5.
  • Fullman, N., et al. (författare)
  • Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016
  • 2017
  • Ingår i: Lancet. - 0140-6736 .- 1474-547X. ; 390:10100, s. 1423-1459
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The UN's Sustainable Development Goals (SDGs) are grounded in the global ambition of "leaving no one behind". Understanding today's gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990-2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030. Methods We used standardised GBD 2016 methods to measure 37 health-related indicators from 1990 to 2016, an increase of four indicators since GBD 2015. We substantially revised the universal health coverage (UHC) measure, which focuses on coverage of essential health services, to also represent personal health-care access and quality for several non-communicable diseases. We transformed each indicator on a scale of 0-100, with 0 as the 2.5th percentile estimated between 1990 and 2030, and 100 as the 97.5th percentile during that time. An index representing all 37 health-related SDG indicators was constructed by taking the geometric mean of scaled indicators by target. On the basis of past trends, we produced projections of indicator values, using a weighted average of the indicator and country-specific annualised rates of change from 1990 to 2016 with weights for each annual rate of change based on out-of-sample validity. 24 of the currently measured health-related SDG indicators have defined SDG targets, against which we assessed attainment. Findings Globally, the median health-related SDG index was 56.7 (IQR 31.9-66.8) in 2016 and country-level performance markedly varied, with Singapore (86.8, 95% uncertainty interval 84.6-88.9), Iceland (86.0, 84.1-87.6), and Sweden (85.6, 81.8-87.8) having the highest levels in 2016 and Afghanistan (10.9, 9.6-11.9), the Central African Republic (11.0, 8.8-13.8), and Somalia (11.3, 9.5-13.1) recording the lowest. Between 2000 and 2016, notable improvements in the UHC index were achieved by several countries, including Cambodia, Rwanda, Equatorial Guinea, Laos, Turkey, and China; however, a number of countries, such as Lesotho and the Central African Republic, but also high-income countries, such as the USA, showed minimal gains. Based on projections of past trends, the median number of SDG targets attained in 2030 was five (IQR 2-8) of the 24 defined targets currently measured. Globally, projected target attainment considerably varied by SDG indicator, ranging from more than 60% of countries projected to reach targets for under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria, to less than 5% of countries projected to achieve targets linked to 11 indicator targets, including those for childhood overweight, tuberculosis, and road injury mortality. For several of the health-related SDGs, meeting defined targets hinges upon substantially faster progress than what most countries have achieved in the past. Interpretation GBD 2016 provides an updated and expanded evidence base on where the world currently stands in terms of the health-related SDGs. Our improved measure of UHC offers a basis to monitor the expansion of health services necessary to meet the SDGs. Based on past rates of progress, many places are facing challenges in meeting defined health-related SDG targets, particularly among countries that are the worst off. In view of the early stages of SDG implementation, however, opportunity remains to take actions to accelerate progress, as shown by the catalytic effects of adopting the Millennium Development Goals after 2000. With the SDGs' broader, bolder development agenda, multisectoral commitments and investments are vital to make the health-related SDGs within reach of all populations. Copyright The Authors. Published by Elsevier Ltd. This is an Open Access article published under the CC BY 4.0 license.
  •  
6.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
7.
  •  
8.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
9.
  • Nelson, G., et al. (författare)
  • QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy
  • 2021
  • Ingår i: Journal of Microscopy. - : Wiley. - 0022-2720 .- 1365-2818. ; 284:1, s. 56-73
  • Tidskriftsartikel (refereegranskat)abstract
    • A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy