SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fenyö Eva Maria) ;pers:(Mild Mattias)"

Sökning: WFRF:(Fenyö Eva Maria) > Mild Mattias

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Casper, C, et al. (författare)
  • Coreceptor usage of primary HIV type 1 isolates obtained from different lymph node subsets
  • 2005
  • Ingår i: AIDS Research and Human Retroviruses. - : Mary Ann Liebert Inc. - 1931-8405 .- 0889-2229. ; 21:12, s. 1003-1010
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological characteristics of virus quantitatively rescued from different cell types present in lymph nodes of HIV-1-infected individuals in various stages of their disease were determined, not including patients with AIDS defining illness. Viruses were obtained by cocultivation with donor monocyte-derived macrophages and T-lymphocytes and their biological phenotype compared to viruses obtained from the peripheral blood mononuclear cells of the same patient. The biological phenotype was determined on established cell lines (U937-2, CEM, and MT-2) and on the U87.CD4 coreceptor indicator cell lines and variable region 3 (V3) of the envelope was subjected to direct sequencing. All isolates obtained from lymph node subsets used CCR5 as coreceptor. Furthermore, these viruses were also sensitive to inhibition by beta-chemokines as analyzed for viruses of one patient. All 12 V3 regions showed a unique sequence indicating compartmentalization within each patient. The biological phenotype of CCR5-dependent (R5) HIV-1 isolates obtained from PBMC resembles the phenotype of viruses isolated from different lymph node cell subsets.
  •  
2.
  • Mild, Mattias, et al. (författare)
  • Differences in molecular evolution between switch (R5 to R5X4/X4-tropic) and non-switch (R5-tropic only) HIV-1 populations during infection.
  • 2010
  • Ingår i: Infection, Genetics and Evolution. - : Elsevier BV. - 1567-7257 .- 1567-1348. ; 10, s. 356-364
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent introduction of entry inhibitors in the clinic as components of antiretroviral treatment has heightened the interest in coreceptor use of human immunodeficiency virus type 1 (HIV-1). Viruses using CCR5 as coreceptor (R5 viruses) are generally present over the entire course of infection whereas viruses using the CXCR4 coreceptor (R5X4/X4 viruses) emerge in about 50% of infected individuals during later stages of infection. The CCR5-to-CXCR4 switch represents a concern because CCR5 inhibitors, while suppressing R5 viruses, may allow the emergence of CXCR4-tropic viruses. In this study, HIV-1 populations that maintained CCR5 usage during infection were compared with populations that switched coreceptor usage to include CXCR4 later during infection, with the aim to find molecular properties of the virus populations associated with the CCR5-to-CXCR4 switch. We amplified and molecularly cloned the V1-V3 region of the HIV-1 envelope from 51 sequential HIV-1 isolates derived from 4 to 10 serial samples for each of the patients. Four of the patients had virus populations that switched coreceptor usage to include CXCR4 (switch populations: SP) during infection and four patients had viral populations that maintained exclusive CCR5 usage (non-switch populations: nSP). Coreceptor usage was determined experimentally on individual clones from dualtropic R5X4 isolates. In nSP we found that the number of potential N-linked glycosylation sites (PNGS) increased over time, whereas no pattern of change was observed in SP. We also found differences in V2 length and V3 charge between R5 viruses of nSP and R5 viruses of SP before the switch. The V2 region was significantly longer in R5 viruses of SP compared to viruses of nSP throughout the course of infection, and the V3 charge increased with time in R5 populations from SP, while it remained unchanged or decreased in nSP. These molecular properties could prove important for understanding the evolution of coreceptor usage in HIV-1 populations, and maybe even for predicting an upcoming coreceptor switch at early stages after primary infection.
  •  
3.
  • Mild, Mattias, et al. (författare)
  • Frequent intrapatient recombination between HIV-1 R5 and X4 envelopes: Implications for coreceptor switch.
  • 2007
  • Ingår i: Journal of Virology. - 1098-5514. ; 81:7, s. 3369-3376
  • Tidskriftsartikel (refereegranskat)abstract
    • Emergence of human immunodeficiency virus type 1 (HIV-1) populations that switch or broaden coreceptor usage from CCR5 to CXCR4 is intimately coupled to CD4(+) cell depletion and disease progression toward AIDS. To better understand the molecular mechanisms involved in the coreceptor switch, we determined the nucleotide sequences of 253 V1 to V3 env clones from 27 sequential HIV-1 subtype B isolates from four patients with virus populations that switch coreceptor usage. Coreceptor usage of clones from dualtropic R5X4 isolates was characterized experimentally. Sequence analysis revealed that 9% of the clones from CXCR4-using isolates had originated by recombination events between R5 and X4 viruses. The majority (73%) of the recombinants used CXCR4. Furthermore, coreceptor usage of the recombinants was determined by a small region of the envelope, including V3. This is the first report demonstrating that intrapatient recombination between viruses with distinct coreceptor usage occurs frequently. It has been proposed that X4 viruses are more easily suppressed by the immune system than R5 viruses. We hypothesize that recombination between circulating R5 viruses and X4 viruses can result in chimeric viruses with the potential to both evade the immune system and infect CXCR4-expressing cells. The broadening in cell tropism of the viral population to include CXCR4-expressing cells would gradually impair the immune system and eventually allow the X4 population to expand. In conclusion, intrapatient recombination between viruses with distinct coreceptor usage may contribute to the emergence of X4 viruses in later stages of infection.
  •  
4.
  • Mild, Mattias, et al. (författare)
  • High intrapatient HIV-1 evolutionary rate is associated with CCR5-to-CXCR4 coreceptor switch
  • 2013
  • Ingår i: Infection, Genetics and Evolution. - : Elsevier BV. - 1567-7257 .- 1567-1348. ; 19, s. 369-377
  • Tidskriftsartikel (refereegranskat)abstract
    • In approximately 70% of individuals infected with HIV-1 subtype B, the virus switches coreceptor use from exclusively CCR5 use (R5 virus) to either inclusion of or exclusively CXCR4 use (X4 virus) during infection. This switch is associated with an accelerated loss of CD4(+) T-cells and a faster progression to AIDS. Despite intensive research, the mechanisms responsible for coreceptor switch remains elusive. In the present study, we investigated associations between viral evolutionary rate and selection pressure versus viral coreceptor use and rate of disease progression in eight patients with longitudinally sampled HIV-1 env V1-V3 sequences. By employing a Bayesian hierarchical phylogenetic model, we found that the HIV-1 evolutionary rate was more strongly associated with coreceptor switch than with rate of disease progression in terms of CD4(+) T-cell decline. Phylogenetic analyses showed that X4 variants evolved from R5 populations. In addition, coreceptor switch was associated with higher evolutionary rates on both the synonymous and non-synonymous substitution level, but not with dN/dS ratio rates. Our findings suggest that X4 viruses evolved from pre-existing R5 viral populations and that the evolution of coreceptor switch is governed by high replication rates rather than by selective pressure. Furthermore, the association of viral evolutionary rate was more strongly associated with coreceptor switch than disease progression. This adds to the understanding of the complex virus-host interplay that influences the evolutionary dynamics of HIV-1 coreceptor use. (C) 2013 Elsevier B. V. All rights reserved.
  •  
5.
  •  
6.
  • Repits, Johanna, et al. (författare)
  • Primary HIV-1 R5 isolates from end-stage disease display enhanced viral fitness in parallel with increased gp120 net charge.
  • 2008
  • Ingår i: Virology. - : Elsevier BV. - 1096-0341 .- 0042-6822. ; 379:1, s. 125-134
  • Tidskriftsartikel (refereegranskat)abstract
    • To better understand the evolution of the viral envelope glycoproteins (Env) in HIV-1 infected individuals who progress to AIDS maintaining an exclusive CCR5-using (R5) virus population, we cloned and sequenced the env gene of longitudinally obtained primary isolates. A shift in the electrostatic potential towards an increased net positive charge was revealed in gp120 of end-stage viruses. Residues with increased positive charge were primarily localized in the gp120 variable regions, with the exception of the V3 loop. Molecular modeling indicated that the modifications clustered on the gp120 surface. Furthermore, correlations between increased Env net charge and lowered CD4(+) T cell counts, enhanced viral fitness, reduced sensitivity to entry inhibitors and augmented cell attachment were disclosed. In summary, this study suggests that R5 HIV-1 variants with increased gp120 net charge emerge in an opportunistic manner during severe immunodeficiency. Thus, we here propose a new mechanism by which HIV-1 may gain fitness.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy