SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fernandez Trincado J. G.) "

Sökning: WFRF:(Fernandez Trincado J. G.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blanton, Michael R., et al. (författare)
  • Sloan Digital Sky Survey IV : Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
  • 2017
  • Ingår i: Astronomical Journal. - : IOP Publishing Ltd. - 0004-6256 .- 1538-3881. ; 154:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and. high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z similar to 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z similar to 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs. and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the. Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
  •  
2.
  • Abolfathi, Bela, et al. (författare)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
3.
  • The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
  •  
4.
  • Aguado, D. S., et al. (författare)
  • The Fifteenth Data Release of the Sloan Digital Sky Surveys : First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
  • 2019
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 240:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July-2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA-we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020-2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.
  •  
5.
  • Sales-Silva, J. V., et al. (författare)
  • A Perspective on the Milky Way Bulge Bar as Seen from the Neutron-capture Elements Cerium and Neodymium with APOGEE
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 965:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This study probes the chemical abundances of the neutron-capture elements cerium and neodymium in the inner Milky Way from an analysis of a sample of similar to 2000 stars in the Galactic bulge bar spatially contained within divided by X-Gal divided by < 5 kpc, divided by Y-Gal divided by < 3.5 kpc, and divided by Z(Gal)divided by < 1 kpc, and spanning metallicities between -2.0 less than or similar to [Fe/H] less than or similar to +0.5. We classify the sample stars into low- or high-[Mg/Fe] populations and find that, in general, values of [Ce/Fe] and [Nd/Fe] increase as the metallicity decreases for the low- and high-[Mg/Fe] populations. Ce abundances show a more complex variation across the metallicity range of our bulge-bar sample when compared to Nd, with the r-process dominating the production of neutron-capture elements in the high-[Mg/Fe] population ([Ce/Nd] < 0.0). We find a spatial chemical dependence of Ce and Nd abundances for our sample of bulge-bar stars, with low- and high-[Mg/Fe] populations displaying a distinct abundance distribution. In the region close to the center of the MW, the low-[Mg/Fe] population is dominated by stars with low [Ce/Fe], [Ce/Mg], [Nd/Mg], [Nd/Fe], and [Ce/Nd] ratios. The low [Ce/Nd] ratio indicates a significant contribution in this central region from r-process yields for the low-[Mg/Fe] population. The chemical pattern of the most metal-poor stars in our sample suggests an early chemical enrichment of the bulge dominated by yields from core-collapse supernovae and r-process astrophysical sites, such as magnetorotational supernovae.
  •  
6.
  • Geisler, D., et al. (författare)
  • CAPOS : The bulge Cluster APOgee Survey I. Overview and initial ASPCAP results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Bulge globular clusters (BGCs) are exceptional tracers of the formation and chemodynamical evolution of this oldest Galactic component. However, until now, observational difficulties have prevented us from taking full advantage of these powerful Galactic archeological tools. Aims. CAPOS, the bulge Cluster APOgee Survey, addresses this key topic by observing a large number of BGCs, most of which have only been poorly studied previously. Even their most basic parameters, such as metallicity, [alpha/Fe], and radial velocity, are generally very uncertain. We aim to obtain accurate mean values for these parameters, as well as abundances for a number of other elements, and explore multiple populations. In this first paper, we describe the CAPOS project and present initial results for seven BGCs. Methods. CAPOS uses the APOGEE-2S spectrograph observing in the H band to penetrate obscuring dust toward the bulge. For this initial paper, we use abundances derived from ASPCAP, the APOGEE pipeline. Results. We derive mean [Fe/H] values of -0.85 +/- 0.04 (Terzan 2), -1.40 +/- 0.05 (Terzan 4), -1.20 +/- 0.10 (HP 1), -1.40 +/- 0.07 (Terzan 9), -1.07 +/- 0.09 (Djorg 2), -1.06 +/- 0.06 (NGC 6540), and -1.11 +/- 0.04 (NGC 6642) from three to ten stars per cluster. We determine mean abundances for eleven other elements plus the mean [alpha/Fe] and radial velocity. CAPOS clusters significantly increase the sample of well-studied Main Bulge globular clusters (GCs) and also extend them to lower metallicity. We reinforce the finding that Main Bulge and Main Disk GCs, formed in situ, have [Si/Fe] abundances slightly higher than their accreted counterparts at the same metallicity. We investigate multiple populations and find our clusters generally follow the light-element (anti)correlation trends of previous studies of GCs of similar metallicity. We finally explore the abundances of the iron-peak elements Mn and Ni and compare their trends with field populations. Conclusions. CAPOS is proving to be an unprecedented resource for greatly improving our knowledge of the formation and evolution of BGCs and the bulge itself.
  •  
7.
  • Sales-Silva, J. V., et al. (författare)
  • Exploring the S-process History in the Galactic Disk : Cerium Abundances and Gradients in Open Clusters from the OCCAM/APOGEE Sample
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 926:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The APOGEE Open Cluster Chemical Abundances and Mapping survey is used to probe the chemical evolution of the s-process element cerium in the Galactic disk. Cerium abundances were derived from measurements of Ce ii lines in the APOGEE spectra using the Brussels Automatic Code for Characterizing High Accuracy Spectra in 218 stars belonging to 42 open clusters. Our results indicate that, in general, for ages < 4 Gyr, younger open clusters have higher [Ce/Fe] and [Ce/α-element] ratios than older clusters. In addition, metallicity segregates open clusters in the [Ce/X]–age plane (where X can be H, Fe, or the α-elements O, Mg, Si, or Ca). These metallicity-dependent relations result in [Ce/Fe] and [Ce/α] ratios with ages that are not universal clocks. Radial gradients of [Ce/H] and [Ce/Fe] ratios in open clusters, binned by age, were derived for the first time, with d[Ce/H]/dRGC being negative, while d[Ce/Fe]/dRGC is positive. [Ce/H] and [Ce/Fe] gradients are approximately constant over time, with the [Ce/Fe] gradient becoming slightly steeper, changing by ∼+0.009 dex kpc−1 Gyr−1. Both the [Ce/H] and [Ce/Fe] gradients are shifted to lower values of [Ce/H] and [Ce/Fe] for older open clusters. The chemical pattern of Ce in open clusters across the Galactic disk is discussed within the context of s-process yields from asymptotic giant branch (AGB) stars, gigayear time delays in Ce enrichment of the interstellar medium, and the strong dependence of Ce nucleosynthesis on the metallicity of its AGB stellar sources.
  •  
8.
  • Horta, Danny, et al. (författare)
  • The chemical compositions of accreted and in situ galactic globular clusters according to SDSS/APOGEE
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 493:3, s. 3363-3378
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of the kinematics and chemical compositions of Galactic globular clusters (GCs) enable the reconstruction of the history of star formation, chemical evolution, and mass assembly of the Galaxy. Using the latest data release (DR16) of the SDSS/APOGEE survey, we identify 3090 stars associated with 46 GCs. Using a previously defined kinematic association, we break the sample down into eight separate groups and examine how the kinematics-based classification maps into chemical composition space, considering only a (mostly Si and Mg) elements and Fe. Our results show that (i) the loci of both in situ and accreted subgroups in chemical space match those of their field counterparts; (ii) GCs from different individual accreted subgroups occupy the same locus in chemical space. This could either mean that they share a similar origin or that they are associated with distinct satelliteswhich underwent similar chemical enrichment histories; (iii) the chemical compositions of the GCs associated with the low orbital energy subgroup defined by Massari and collaborators is broadly consistent with an in situ origin. However, at the low-metallicity end, the distinction between accreted and in situ populations is blurred; (iv) regarding the status of GCs whose origin is ambiguous, we conclude the following: the position in Si-Fe plane suggests an in situ origin for Liller 1 and a likely accreted origin for NGC 5904 and NGC 6388. The case of NGC 288 is unclear, as its orbital properties suggest an accretion origin, its chemical composition suggests it may have formed in situ.
  •  
9.
  • Pinsonneault, Marc H., et al. (författare)
  • The Second APOKASC Catalog : The Empirical Approach
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 239:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a catalog of stellar properties for a large sample of 6676 evolved stars with Apache Point Observatory Galactic Evolution Experiment spectroscopic parameters and Kepler asteroseismic data analyzed using five independent techniques. Our data include evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed by accounting for differences in their solar reference values. We include theoretically motivated corrections to the large frequency spacing (Av) scaling relation, and we calibrate the zero-point of the frequency of the maximum power (vmax) relation to be consistent with masses and radii for members of star clusters. For most targets, the parameters returned by different pipelines are in much better agreement than would be expected from the pipeline-predicted random errors, but 22% of them had at least one method not return a result and a much larger measurement dispersion. This supports the usage of multiple analysis techniques for asteroseismic stellar population studies. The measured dispersion in mass estimates for fundamental calibrators is consistent with our error model, which yields median random and systematic mass uncertainties for RGB stars of order 4%. Median random and systematic mass uncertainties are at the 9% and 8% level, respectively, for red clump stars.
  •  
10.
  • Santana, Felipe A., et al. (författare)
  • Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey
  • 2021
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 162:6
  • Tidskriftsartikel (refereegranskat)abstract
    • APOGEE is a high-resolution (R similar to 22,000), near-infrared, multi-epoch, spectroscopic survey of the Milky Way. The second generation of the APOGEE project, APOGEE-2, includes an expansion of the survey to the Southern Hemisphere called APOGEE-2S. This expansion enabled APOGEE to perform a fully panoramic mapping of all of the main regions of the Milky Way; in particular, by operating in the H band, APOGEE is uniquely able to probe the dust-hidden inner regions of the Milky Way that are best accessed from the Southern Hemisphere. In this paper we present the targeting strategy of APOGEE-2S, with special attention to documenting modifications to the original, previously published plan. The motivation for these changes is explained as well as an assessment of their effectiveness in achieving their intended scientific objective. In anticipation of this being the last paper detailing APOGEE targeting, we present an accounting of all such information complete through the end of the APOGEE-2S project; this includes several main survey programs dedicated to exploration of major stellar populations and regions of the Milky Way, as well as a full list of programs contributing to the APOGEE database through allocations of observing time by the Chilean National Time Allocation Committee and the Carnegie Institution for Science. This work was presented along with a companion article, Beaton et al. (2021), presenting the final target selection strategy adopted for APOGEE-2 in the Northern Hemisphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy