SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferrannini Ele) "

Sökning: WFRF:(Ferrannini Ele)

  • Resultat 1-10 av 44
  • [1]2345Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jain, Ruchi, et al. (författare)
  • Liver nucleotide biosynthesis is linked to protection from vascular complications in individuals with long-term type 1 diabetes
  • 2020
  • Ingår i: Scientific Reports. - Nature Publishing Group. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of biomarkers associated with protection from developing diabetic complications is a prerequisite for an effective prevention and treatment. The aim of the present study was to identify clinical and plasma metabolite markers associated with freedom from vascular complications in people with very long duration of type 1 diabetes (T1D). Individuals with T1D, who despite having longer than 30 years of diabetes duration never developed major macro- or microvascular complications (non-progressors; NP) were compared with those who developed vascular complications within 25 years from diabetes onset (rapid progressors; RP) in the Scandinavian PROLONG (n = 385) and DIALONG (n = 71) cohorts. The DIALONG study also included 75 healthy controls. Plasma metabolites were measured using gas and/or liquid chromatography coupled to mass spectrometry. Lower hepatic fatty liver indices were significant common feature characterized NPs in both studies. Higher insulin sensitivity and residual ß-cell function (C-peptide) were also associated with NPs in PROLONG. Protection from diabetic complications was associated with lower levels of the glycolytic metabolite pyruvate and APOCIII in PROLONG, and with lower levels of thiamine monophosphate and erythritol, a cofactor and intermediate product in the pentose phosphate pathway as well as higher phenylalanine, glycine and serine in DIALONG. Furthermore, T1D individuals showed elevated levels of picolinic acid as compared to the healthy individuals. The present findings suggest a potential beneficial shunting of glycolytic substrates towards the pentose phosphate and one carbon metabolism pathways to promote nucleotide biosynthesis in the liver. These processes might be linked to higher insulin sensitivity and lower liver fat content, and might represent a mechanism for protection from vascular complications in individuals with long-term T1D.
2.
  • Perry, John R. B., et al. (författare)
  • Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes
  • 2010
  • Ingår i: Human Molecular Genetics. - Oxford University Press. - 0964-6906. ; 19:3, s. 535-544
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 x 10(-5)], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
  •  
3.
  • Strawbridge, Rona J., et al. (författare)
  • Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes
  • 2011
  • Ingår i: Diabetes. - American Diabetes Association Inc.. - 1939-327X. ; 60:10, s. 2624-2634
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired beta-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS-We have conducted a meta-analysis of genome-wide association tests of similar to 2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS-Nine SNPs at eight loci were associated with proinsulin levels (P < 5 x 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC3OA8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 x 10(-4)), improved beta-cell function (P = 1.1 x 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 x 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS-We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis. Diabetes 60:2624-2634, 2011
  •  
4.
  •  
5.
  • Cobb, Jeff, et al. (författare)
  • α-Hydroxybutyric acid is a selective metabolite biomarker of impaired glucose tolerance
  • 2016
  • Ingår i: Diabetes Care. - American Diabetes Association. - 0149-5992. ; 39:6, s. 988-995
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Plasma metabolites that distinguish isolated impaired glucose tolerance (iIGT) from isolated impaired fasting glucose (iIFG) may be useful biomarkers to predict IGT, a high-risk state for the development of type 2 diabetes. RESEARCH DESIGN AND METHODS Targeted metabolomics with 23 metabolites previously associated with dysglycemia was performed with fasting plasma samples from subjects without diabetes at time 0 of an oral glucose tolerance test (OGTT) in two observational cohorts: RISC (Relationship Between Insulin Sensitivity and Cardiovascular Disease) and DMVhi (Diabetes Mellitus and Vascular Health Initiative). Odds ratios (ORs) for a one-SD change in the metabolite level were calculated using multiple logistic regression models controlling for age, sex, and BMI to test for associations with iIGT or iIFG versus normal. Selective biomarkers of iIGT were further validated in the Botnia study. RESULTS α-Hydroxybutyric acid (α-HB) was most strongly associated with iIGT in RISC (OR 2.54 [95% CI 1.86-3.48], P value 5E-9) and DMVhi (2.75 [1.81-4.19], 4E-5) while having no significant association with iIFG. In Botnia, a-HB was selectively associated with iIGT (2.03 [1.65-2.49], 3E-11) and had no significant association with iIFG. Linoleoyl-glycerophosphocholine (L-GPC) and oleic acid were also found to be selective biomarkers of iIGT. In multivariate IGT prediction models, addition of α-HB, L-GPC, and oleic acid to age, sex, BMI, and fasting glucose significantly improved area under the curve in all three cohorts. CONCLUSIONS α-HB, L-GPC, and oleic acid were shown to be selective biomarkers of iIGT, independent of age, sex, BMI, and fasting glucose, in 4,053 subjects without diabetes from three European cohorts. These biomarkers can be used in predictive models to identify subjects with IGT without performing an OGTT.
  •  
6.
  • DeFronzo, Ralph A., et al. (författare)
  • Type 2 diabetes mellitus
  • 2015
  • Ingår i: Nature Reviews Disease Primers. - Nature Publishing Group. - 2056-676X. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes mellitus (T2DM) is an expanding global health problem, closely linked to the epidemic of obesity. Individuals with T2DM are at high risk for both microvascular complications (including retinopathy, nephropathy and neuropathy) and macrovascular complications (such as cardiovascular comorbidities), owing to hyperglycaemia and individual components of the insulin resistance (metabolic) syndrome. Environmental factors (for example, obesity, an unhealthy diet and physical inactivity) and genetic factors contribute to the multiple pathophysiological disturbances that are responsible for impaired glucose homeostasis in T2DM. Insulin resistance and impaired insulin secretion remain the core defects in T2DM, but at least six other pathophysiological abnormalities contribute to the dysregulation of glucose metabolism. The multiple pathogenetic disturbances present in T2DM dictate that multiple antidiabetic agents, used in combination, will be required to maintain normoglycaemia. The treatment must not only be effective and safe but also improve the quality of life. Several novel medications are in development, but the greatest need is for agents that enhance insulin sensitivity, halt the progressive pancreatic β-cell failure that is characteristic of T2DM and prevent or reverse the microvascular complications. For an illustrated summary of this Primer, visit: http://go.nature.com/V2eGfN.
  •  
7.
  • Ferrannini, Ele, et al. (författare)
  • Early Metabolic Markers of the Development of Dysglycemia and Type 2 Diabetes and Their Physiological Significance
  • 2013
  • Ingår i: Diabetes. - American Diabetes Association Inc.. - 1939-327X. ; 62:5, s. 1730-1737
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolomic screening of fasting plasma from nondiabetic subjects identified alpha-hydroxybutyrate (alpha-HB) and linoleoyl-glycerophosphocholine (L-GPC) as joint markers of insulin resistance (IR) and glucose intolerance. To test the predictivity of alpha-HB and L-GPC for incident dysglycemia, alpha-HB and L-GPC measurements were obtained in two observational cohorts, comprising 1,261 nondiabetic participants from the Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC) study and 2,580 from the Botnia Prospective Study, with 3-year and 9.5-year follow-up data, respectively. In both cohorts, alpha-HB was a positive correlate and L-GPC a negative correlate of insulin sensitivity, with alpha-HB reciprocally related to indices of beta-cell function derived from the oral glucose tolerance test (OGTT). In follow-up, alpha-HB was a positive predictor (adjusted odds ratios 1.25 [95% CI 1.00-1.60] and 1.26 [1.07-1.48], respectively, for each standard deviation of predictor), and L-GPC was a negative predictor (0.64 [0.48-0.85] and 0.67 [0.54-0.84]) of dysglycemia (RISC) or type 2 diabetes (Botnia), independent of familial diabetes, sex, age, BMI, and fasting glucose. Corresponding areas under the receiver operating characteristic curve were 0.791 (RISC) and 0.783 (Botnia), similar in accuracy when substituting cc-JIB and L-GPC with 2-h OGTT glucose concentrations. When their activity was examined, alpha-JIB inhibited and L-GPC stimulated glucose-induced insulin release in INS-le cells. alpha-JIB and L-GPC are independent predictors of worsening glucose tolerance, physiologically consistent with a joint signature of IR and beta-cell dysfunction. Diabetes 62:1730-1737, 2013
  •  
8.
  • Ingelsson, Erik, et al. (författare)
  • Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans
  • 2010
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • <p><strong>OBJECTIVE</strong></p> <p>Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action.</p> <p><strong>RESEARCH DESIGN AND METHODS</strong></p> <p>We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084).</p> <p><strong>RESULTS</strong></p> <p>The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction.</p> <p><strong>CONCLUSIONS</strong></p> <p>Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.</p>
  •  
9.
  • Ingelsson, Erik, et al. (författare)
  • Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans
  • 2010
  • Ingår i: 59th Annual Meeting of the American-Society-of-Human-Genetics,2009-10-20 - 2009-10-24. - American Diabetes Association.
  • Konferensbidrag (refereegranskat)abstract
    • OBJECTIVE-Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS-We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS-The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS-Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. Diabetes 59:1266-1275, 2010
  •  
10.
  • Jain, Ruchi, et al. (författare)
  • Liver nucleotide biosynthesis is linked to protection from vascular complications in individuals with long-term type 1 diabetes
  • 2020
  • Ingår i: Scientific Reports. - Nature Publishing Group. - 2045-2322 .- 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Identification of biomarkers associated with protection from developing diabetic complications is a prerequisite for an effective prevention and treatment. The aim of the present study was to identify clinical and plasma metabolite markers associated with freedom from vascular complications in people with very long duration of type 1 diabetes (T1D). Individuals with T1D, who despite having longer than 30 years of diabetes duration never developed major macro- or microvascular complications (non-progressors; NP) were compared with those who developed vascular complications within 25 years from diabetes onset (rapid progressors; RP) in the Scandinavian PROLONG (n = 385) and DIALONG (n = 71) cohorts. The DIALONG study also included 75 healthy controls. Plasma metabolites were measured using gas and/or liquid chromatography coupled to mass spectrometry. Lower hepatic fatty liver indices were significant common feature characterized NPs in both studies. Higher insulin sensitivity and residual ß-cell function (C-peptide) were also associated with NPs in PROLONG. Protection from diabetic complications was associated with lower levels of the glycolytic metabolite pyruvate and APOCIII in PROLONG, and with lower levels of thiamine monophosphate and erythritol, a cofactor and intermediate product in the pentose phosphate pathway as well as higher phenylalanine, glycine and serine in DIALONG. Furthermore, T1D individuals showed elevated levels of picolinic acid as compared to the healthy individuals. The present findings suggest a potential beneficial shunting of glycolytic substrates towards the pentose phosphate and one carbon metabolism pathways to promote nucleotide biosynthesis in the liver. These processes might be linked to higher insulin sensitivity and lower liver fat content, and might represent a mechanism for protection from vascular complications in individuals with long-term T1D.</p>
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 44
  • [1]2345Nästa
Åtkomst
fritt online (4)
Typ av publikation
tidskriftsartikel (43)
konferensbidrag (1)
Typ av innehåll
refereegranskat (44)
övrigt vetenskapligt (1)
Författare/redaktör
Langenberg, Claudia (31)
Kuusisto, Johanna, (30)
Laakso, Markku, (28)
Scott, Robert A (24)
Stancáková, Alena, (23)
Gustafsson, Stefan (22)
visa fler...
Hattersley, Andrew T (21)
Jackson, Anne U. (21)
Luan, Jian'an (20)
Collins, Francis S. (20)
Wareham, Nicholas J (19)
Lind, Lars, (18)
Lyssenko, Valeriya, (18)
Hayward, Caroline (18)
Gudnason, Vilmundur (17)
McCarthy, Mark I (17)
Boehnke, Michael (17)
Stringham, Heather M ... (17)
Harris, Tamara B. (17)
Ferrières, Jean (17)
Pedersen, Oluf, (16)
Hansen, Torben, (16)
Mohlke, Karen L (16)
Ingelsson, Erik (16)
Zhao, Jing Hua (16)
Kovacs, Peter (16)
Morris, Andrew D (16)
Chasman, Daniel I., (15)
Giedraitis, Vilmanta ... (15)
Thorleifsson, Gudmar (15)
Steinthorsdottir, Va ... (15)
Boerwinkle, Eric (15)
Rudan, Igor (15)
Kanoni, Stavroula (15)
Goel, Anuj (15)
Teumer, Alexander (14)
Amouyel, Philippe (14)
Chu, Audrey Y (14)
Salomaa, Veikko (14)
Samani, Nilesh J. (14)
Barroso, Inês (14)
Vedantam, Sailaja (14)
Winkler, Thomas W. (14)
Feitosa, Mary F. (14)
Esko, Tonu (14)
Morris, Andrew P. (14)
Caulfield, Mark J. (14)
Frayling, Timothy M. (14)
Kee, Frank (14)
Arveiler, Dominique, (14)
visa färre...
Lärosäte
Lunds universitet (16)
Uppsala universitet (11)
Umeå universitet (10)
Göteborgs universitet (8)
Karolinska Institutet (7)
Kungliga Tekniska Högskolan (3)
visa fler...
Stockholms universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (44)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (42)
Naturvetenskap (3)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy