SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferrannini Ele) "

Sökning: WFRF:(Ferrannini Ele)

  • Resultat 1-10 av 29
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jain, R., et al. (författare)
  • Liver nucleotide biosynthesis is linked to protection from vascular complications in individuals with long-term type 1 diabetes
  • 2020
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of biomarkers associated with protection from developing diabetic complications is a prerequisite for an effective prevention and treatment. The aim of the present study was to identify clinical and plasma metabolite markers associated with freedom from vascular complications in people with very long duration of type 1 diabetes (T1D). Individuals with T1D, who despite having longer than 30 years of diabetes duration never developed major macro- or microvascular complications (non-progressors; NP) were compared with those who developed vascular complications within 25 years from diabetes onset (rapid progressors; RP) in the Scandinavian PROLONG (n = 385) and DIALONG (n = 71) cohorts. The DIALONG study also included 75 healthy controls. Plasma metabolites were measured using gas and/or liquid chromatography coupled to mass spectrometry. Lower hepatic fatty liver indices were significant common feature characterized NPs in both studies. Higher insulin sensitivity and residual beta-cell function (C-peptide) were also associated with NPs in PROLONG. Protection from diabetic complications was associated with lower levels of the glycolytic metabolite pyruvate and APOCIII in PROLONG, and with lower levels of thiamine monophosphate and erythritol, a cofactor and intermediate product in the pentose phosphate pathway as well as higher phenylalanine, glycine and serine in DIALONG. Furthermore, T1D individuals showed elevated levels of picolinic acid as compared to the healthy individuals. The present findings suggest a potential beneficial shunting of glycolytic substrates towards the pentose phosphate and one carbon metabolism pathways to promote nucleotide biosynthesis in the liver. These processes might be linked to higher insulin sensitivity and lower liver fat content, and might represent a mechanism for protection from vascular complications in individuals with long-term T1D.
  •  
2.
  • Ingelsson, Erik, et al. (författare)
  • Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Konferensbidrag (refereegranskat)abstract
    • OBJECTIVE-Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS-We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS-The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS-Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. Diabetes 59:1266-1275, 2010
  •  
3.
  • Lee, S., et al. (författare)
  • Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance
  • 2016
  • Ingår i: Cell Metabolism. - : Cell Press. - 1550-4131 .- 1932-7420. ; 24:1, s. 172-184
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the biological processes that are altered in obese subjects, we generated cell-specific integrated networks (INs) by merging genome-scale metabolic, transcriptional regulatory and protein-protein interaction networks. We performed genome-wide transcriptomics analysis to determine the global gene expression changes in the liver and three adipose tissues from obese subjects undergoing bariatric surgery and integrated these data into the cell-specific INs. We found dysregulations in mannose metabolism in obese subjects and validated our predictions by detecting mannose levels in the plasma of the lean and obese subjects. We observed significant correlations between plasma mannose levels, BMI, and insulin resistance (IR). We also measured plasma mannose levels of the subjects in two additional different cohorts and observed that an increased plasma mannose level was associated with IR and insulin secretion. We finally identified mannose as one of the best plasma metabolites in explaining the variance in obesity-independent IR.
  •  
4.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
5.
  • Mardinoglu, A., et al. (författare)
  • Elevated Plasma Levels of 3-Hydroxyisobutyric Acid Are Associated With Incident Type 2 Diabetes
  • 2018
  • Ingår i: Ebiomedicine. - : ELSEVIER SCIENCE BV. - 2352-3964. ; 27, s. 151-155
  • Tidskriftsartikel (refereegranskat)abstract
    • Branched-chain amino acids (BCAAs) metabolite, 3-Hydroxyisobutyric acid (3-HIB) has been identified as a secreted mediator of endothelial cell fatty acid transport and insulin resistance (IR) using animal models. To identify if 3-HIB is a marker of human IR and future risk of developing Type 2 diabetes (T2D), we measured plasma levels of 3-HIB and associated metabolites in around 10,000 extensively phenotyped individuals. The levels of 3-HIB were increased in obesity but not robustly associated with degree of IR after adjusting for BMI. Nevertheless, also after adjusting for obesity and plasma BCAA, 3-HIB levels were associated with future risk of incident T2D. We also examined the effect of 3-HIB on fatty acid uptake in human cells and found that both HUVEC and human cardiac endothelial cells respond to 3-HIB whereas human adipose tissue-derived endothelial cells do not respond to 3-HIB. In conclusion, we found that increased plasma level of 3-HIB is a marker of future risk of T2D and 3-HIB may be important for the regulation of metabolic flexibility in heart and muscles.
  •  
6.
  • Mardinoglu, Adil, et al. (författare)
  • Plasma Mannose Levels Are Associated with Incident Type 2 Diabetes and Cardiovascular Disease.
  • 2017
  • Ingår i: Cell metabolism. - : Cell Press. - 1932-7420 .- 1550-4131. ; 26:2, s. 281-283
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma mannose levels are elevated in subjects with insulin resistance independently of obesity. Here, we found that elevated plasma mannose levels are strong markers of future risk of several chronic diseases including T2D, CVD, and albuminuria, and that it may contribute to their development rather than just being a novel biomarker.
  •  
7.
  • Perry, John R. B., et al. (författare)
  • Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906. ; 19:3, s. 535-544
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 x 10(-5)], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
  •  
8.
  • Scott, Robert A, et al. (författare)
  • Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independently of obesity.
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X .- 0012-1797. ; 63:12, s. 4378-4387
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterise their association with intermediate phenotypes, and to investigate their role in T2D risk among normal-weight, overweight and obese individuals.We investigated the association of genetic scores with euglycaemic-hyperinsulinaemic clamp- and OGTT-based measures of insulin resistance and secretion, and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs-per-allele [95%CI]:-0.03[-0.04,-0.01];p=0.004). This score was associated with lower BMI (-0.01[-0.01,-0.0;p=0.02) and gluteofemoral fat-mass : -0.03[-0.05,-0.02;p=1.4x10(-6)), and with higher ALT (0.02[0.01,0.03];p=0.002) and gamma-GT (0.02[0.01,0.03];p=0.001). While the secretion score had a stronger association with T2D in leaner individuals (pinteraction=0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI- or waist-strata(pinteraction>0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size.
  •  
9.
  • Shungin, Dmitry, et al. (författare)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
10.
  • Strawbridge, Rona J., et al. (författare)
  • Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X .- 0012-1797. ; 60:10, s. 2624-2634
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired beta-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS-We have conducted a meta-analysis of genome-wide association tests of similar to 2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS-Nine SNPs at eight loci were associated with proinsulin levels (P < 5 x 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC3OA8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 x 10(-4)), improved beta-cell function (P = 1.1 x 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 x 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS-We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis. Diabetes 60:2624-2634, 2011
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
  • [1]23Nästa
Typ av publikation
tidskriftsartikel (28)
konferensbidrag (1)
Typ av innehåll
refereegranskat (29)
Författare/redaktör
Wareham, Nicholas J (20)
Laakso, Markku (18)
McCarthy, Mark I (18)
Frayling, Timothy M (18)
Langenberg, Claudia (17)
Scott, Robert A (16)
visa fler...
Barroso, Ines (16)
Stancáková, Alena (15)
Mohlke, Karen L (15)
Lindgren, Cecilia M. (15)
Kuusisto, Johanna (14)
Hattersley, Andrew T (14)
Loos, Ruth J F (14)
Boehnke, Michael (13)
Ingelsson, Erik (13)
Franks, Paul W (12)
Groop, Leif (12)
Raitakari, Olli T (11)
Uitterlinden, Andre ... (11)
Ridker, Paul M. (11)
Chasman, Daniel I. (11)
Ferrannini, E (11)
Palmer, Colin N. A. (11)
Morris, Andrew D (11)
Wood, Andrew R (11)
Deloukas, Panos (10)
Gustafsson, Stefan (10)
Samani, Nilesh J. (10)
Munroe, Patricia B. (10)
Harris, Tamara B (10)
Zhao, Jing Hua (10)
Morris, Andrew P (10)
North, Kari E (10)
Ferrières, Jean (10)
Balkau, Beverley (10)
Lyssenko, Valeriya (9)
Lind, Lars (9)
Pedersen, Oluf (9)
Hansen, Torben (9)
Laakso, M (9)
Saleheen, Danish (9)
Yaghootkar, Hanieh (9)
Caulfield, Mark J. (9)
Hirschhorn, Joel N. (9)
Assimes, Themistocle ... (9)
Heid, Iris M (9)
Perry, John R. B. (9)
Kutalik, Zoltan (9)
Giedraitis, Vilmanta ... (9)
Tuomilehto, Jaakko (9)
visa färre...
Lärosäte
Lunds universitet (21)
Göteborgs universitet (10)
Uppsala universitet (6)
Umeå universitet (5)
Kungliga Tekniska Högskolan (3)
Stockholms universitet (1)
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (28)
Naturvetenskap (4)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy