SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferrannini Ele) ;mspu:(article)"

Sökning: WFRF:(Ferrannini Ele) > Tidskriftsartikel

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fortin, Elena, et al. (författare)
  • Empagliflozin improves insulin sensitivity in patients with recent acute coronary syndrome and newly detected dysglycaemia : Experiences from the randomized, controlled SOCOGAMI trial
  • 2023
  • Ingår i: Cardiovascular Diabetology. - : Springer Nature. - 1475-2840 .- 1475-2840. ; 22:1, s. 208-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Empagliflozin reduces the risk of cardiovascular disease (CVD) in patients with type 2 diabetes (T2DM) and high cardiovascular risk via mechanisms which have not been fully explained. The mechanisms of such benefit have not been fully understood, and whether empagliflozin can be safely administered as first-line treatment in patients with CVD at the initial stages of glycaemic perturbations remains to be established. We investigated the effects of empagliflozin on insulin resistance, insulin sensitivity and β-cell function indexes in patients with a recent acute coronary event and newly detected dysglycaemia, i.e., impaired glucose tolerance (IGT) or T2DM. METHODS: Forty-two patients (mean age 67.5 years, 19% females) with a recent myocardial infarction (n = 36) or unstable angina (n = 6) and newly detected dysglycaemia were randomized to either empagliflozin 25 mg daily (n = 20) or placebo (n = 22). Patients were investigated with stress-perfusion cardiac magnetic resonance imaging before randomization, 7 months after the start of study drug and 3 months following its cessation. Indexes of insulin resistance, sensitivity and β-cell function were calculated based on glucose and insulin values from 2-hour oral glucose tolerance tests (OGTT) and fasting C-peptide. The differences in glucose, insulin, C-peptide, mannose levels and indexes between the two groups were computed by repeated measures ANOVA including an interaction term between the treatment allocation and the time of visit. RESULTS: After 7 months, empagliflozin significantly decreased glucose and insulin values during the OGTT, whereas C-peptide, mannose and HbA1c did not differ. Empagliflozin significantly improved insulin sensitivity indexes but did not impact insulin resistance and β-cell function. After cessation of the drug, all indexes returned to initial levels. Insulin sensitivity indexes were inversely correlated with left ventricular mass at baseline. CONCLUSIONS: Empagliflozin improved insulin sensitivity indexes in patients with a recent coronary event and drug naïve dysglycaemia. These findings support the safe use of empagliflozin as first-line glucose-lowering treatment in patients at very high cardiovascular risk with newly diagnosed dysglycaemia. TRIAL REGISTRATION NUMBER: EudraCT number 2015-004571-73.
  •  
2.
  • Fortin, Elena, et al. (författare)
  • Plasma mannose as a novel marker of myocardial infarction across different glycaemic states : A case control study
  • 2022
  • Ingår i: Cardiovascular Diabetology. - : Springer Nature. - 1475-2840 .- 1475-2840. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Plasma mannose, an emerging novel biomarker of insulin resistance, is associated with both diabetes mellitus and coronary atherosclerosis, but the relationship between mannose concentrations and myocardial infarction (MI) across different glycaemic states remains to be elucidated. The aim of this study was to investigate the independent association between mannose and a first MI in a group of subjects characterized according to their glycaemic state. Methods Fasting plasma mannose concentrations were analysed in 777 patients 6-10 weeks after a first myocardial infarction and in 770 matched controls by means of high-performance liquid chromatography coupled to tandem mass spectrometry. Participants without known diabetes mellitus were categorized by an oral glucose tolerance test (OGTT) as having normal glucose tolerance (NGT, n = 1045), impaired glucose tolerance (IGT, n = 246) or newly detected type 2 diabetes (T2DM, n = 112). The association between mannose and MI was investigated across these glycaemic states by logistic regression. Results Mannose levels increased across the glycaemic states (p < 0.0001) and were significantly associated with a first MI in the whole study population (odds ratio, OR: 2.2; 95% CI 1.4 to - 3.5). Considering the different subgroups separately, the association persisted only in subjects with NGT (adjusted OR: 2.0; 95% CI 1.2-3.6), but not in subgroups with glucose perturbations (adjusted OR: 1.8, 95% CI 0.8-3.7). Conclusions Mannose concentrations increased across worsening levels of glucose perturbations but were independently associated with a first MI only in NGT individuals. Thus, mannose might be a novel, independent risk marker for MI, possibly targeted for the early management of previously unidentified patients at high cardiovascular risk.
  •  
3.
  • Perry, John R. B., et al. (författare)
  • Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:3, s. 535-544
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 x 10(-5)], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
  •  
4.
  • Cobb, Jeff, et al. (författare)
  • α-Hydroxybutyric acid is a selective metabolite biomarker of impaired glucose tolerance
  • 2016
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 39:6, s. 988-995
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Plasma metabolites that distinguish isolated impaired glucose tolerance (iIGT) from isolated impaired fasting glucose (iIFG) may be useful biomarkers to predict IGT, a high-risk state for the development of type 2 diabetes. RESEARCH DESIGN AND METHODS Targeted metabolomics with 23 metabolites previously associated with dysglycemia was performed with fasting plasma samples from subjects without diabetes at time 0 of an oral glucose tolerance test (OGTT) in two observational cohorts: RISC (Relationship Between Insulin Sensitivity and Cardiovascular Disease) and DMVhi (Diabetes Mellitus and Vascular Health Initiative). Odds ratios (ORs) for a one-SD change in the metabolite level were calculated using multiple logistic regression models controlling for age, sex, and BMI to test for associations with iIGT or iIFG versus normal. Selective biomarkers of iIGT were further validated in the Botnia study. RESULTS α-Hydroxybutyric acid (α-HB) was most strongly associated with iIGT in RISC (OR 2.54 [95% CI 1.86-3.48], P value 5E-9) and DMVhi (2.75 [1.81-4.19], 4E-5) while having no significant association with iIFG. In Botnia, a-HB was selectively associated with iIGT (2.03 [1.65-2.49], 3E-11) and had no significant association with iIFG. Linoleoyl-glycerophosphocholine (L-GPC) and oleic acid were also found to be selective biomarkers of iIGT. In multivariate IGT prediction models, addition of α-HB, L-GPC, and oleic acid to age, sex, BMI, and fasting glucose significantly improved area under the curve in all three cohorts. CONCLUSIONS α-HB, L-GPC, and oleic acid were shown to be selective biomarkers of iIGT, independent of age, sex, BMI, and fasting glucose, in 4,053 subjects without diabetes from three European cohorts. These biomarkers can be used in predictive models to identify subjects with IGT without performing an OGTT.
  •  
5.
  • DeFronzo, Ralph A., et al. (författare)
  • Type 2 diabetes mellitus
  • 2015
  • Ingår i: Nature Reviews Disease Primers. - : Springer Science and Business Media LLC. - 2056-676X. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes mellitus (T2DM) is an expanding global health problem, closely linked to the epidemic of obesity. Individuals with T2DM are at high risk for both microvascular complications (including retinopathy, nephropathy and neuropathy) and macrovascular complications (such as cardiovascular comorbidities), owing to hyperglycaemia and individual components of the insulin resistance (metabolic) syndrome. Environmental factors (for example, obesity, an unhealthy diet and physical inactivity) and genetic factors contribute to the multiple pathophysiological disturbances that are responsible for impaired glucose homeostasis in T2DM. Insulin resistance and impaired insulin secretion remain the core defects in T2DM, but at least six other pathophysiological abnormalities contribute to the dysregulation of glucose metabolism. The multiple pathogenetic disturbances present in T2DM dictate that multiple antidiabetic agents, used in combination, will be required to maintain normoglycaemia. The treatment must not only be effective and safe but also improve the quality of life. Several novel medications are in development, but the greatest need is for agents that enhance insulin sensitivity, halt the progressive pancreatic β-cell failure that is characteristic of T2DM and prevent or reverse the microvascular complications. For an illustrated summary of this Primer, visit: http://go.nature.com/V2eGfN.
  •  
6.
  • Deshmukh, Harshal A., et al. (författare)
  • Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity
  • 2021
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 106:1, s. 80-90
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Pancreatic beta-cell glucose sensitivity is the slope of the plasma glucose-insulin secretion relationship and is a key predictor of deteriorating glucose tolerance and development of type 2 diabetes. However, there are no large-scale studies looking at the genetic determinants of beta-cell glucose sensitivity. OBJECTIVE: To understand the genetic determinants of pancreatic beta-cell glucose sensitivity using genome-wide meta-analysis and candidate gene studies. DESIGN: We performed a genome-wide meta-analysis for beta-cell glucose sensitivity in subjects with type 2 diabetes and nondiabetic subjects from 6 independent cohorts (n = 5706). Beta-cell glucose sensitivity was calculated from mixed meal and oral glucose tolerance tests, and its associations between known glycemia-related single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) SNPs were estimated using linear regression models. RESULTS: Beta-cell glucose sensitivity was moderately heritable (h2 ranged from 34% to 55%) using SNP and family-based analyses. GWAS meta-analysis identified multiple correlated SNPs in the CDKAL1 gene and GIPR-QPCTL gene loci that reached genome-wide significance, with SNP rs2238691 in GIPR-QPCTL (P value = 2.64 × 10-9) and rs9368219 in the CDKAL1 (P value = 3.15 × 10-9) showing the strongest association with beta-cell glucose sensitivity. These loci surpassed genome-wide significance when the GWAS meta-analysis was repeated after exclusion of the diabetic subjects. After correction for multiple testing, glycemia-associated SNPs in or near the HHEX and IGF2B2 loci were also associated with beta-cell glucose sensitivity. CONCLUSION: We show that, variation at the GIPR-QPCTL and CDKAL1 loci are key determinants of pancreatic beta-cell glucose sensitivity.
  •  
7.
  • Ferrannini, Ele, et al. (författare)
  • Early Metabolic Markers of the Development of Dysglycemia and Type 2 Diabetes and Their Physiological Significance
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:5, s. 1730-1737
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolomic screening of fasting plasma from nondiabetic subjects identified alpha-hydroxybutyrate (alpha-HB) and linoleoyl-glycerophosphocholine (L-GPC) as joint markers of insulin resistance (IR) and glucose intolerance. To test the predictivity of alpha-HB and L-GPC for incident dysglycemia, alpha-HB and L-GPC measurements were obtained in two observational cohorts, comprising 1,261 nondiabetic participants from the Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC) study and 2,580 from the Botnia Prospective Study, with 3-year and 9.5-year follow-up data, respectively. In both cohorts, alpha-HB was a positive correlate and L-GPC a negative correlate of insulin sensitivity, with alpha-HB reciprocally related to indices of beta-cell function derived from the oral glucose tolerance test (OGTT). In follow-up, alpha-HB was a positive predictor (adjusted odds ratios 1.25 [95% CI 1.00-1.60] and 1.26 [1.07-1.48], respectively, for each standard deviation of predictor), and L-GPC was a negative predictor (0.64 [0.48-0.85] and 0.67 [0.54-0.84]) of dysglycemia (RISC) or type 2 diabetes (Botnia), independent of familial diabetes, sex, age, BMI, and fasting glucose. Corresponding areas under the receiver operating characteristic curve were 0.791 (RISC) and 0.783 (Botnia), similar in accuracy when substituting cc-JIB and L-GPC with 2-h OGTT glucose concentrations. When their activity was examined, alpha-JIB inhibited and L-GPC stimulated glucose-induced insulin release in INS-le cells. alpha-JIB and L-GPC are independent predictors of worsening glucose tolerance, physiologically consistent with a joint signature of IR and beta-cell dysfunction. Diabetes 62:1730-1737, 2013
  •  
8.
  • Ingelsson, Erik, et al. (författare)
  • Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
  •  
9.
  • Justice, Anne E., et al. (författare)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
10.
  • Kozakova, Michaela, et al. (författare)
  • Gamma-glutamyltransferase, arterial remodeling and prehypertension in a healthy population at low cardiometabolic risk
  • 2020
  • Ingår i: Journal of Human Hypertension. - : Springer Science and Business Media LLC. - 1476-5527 .- 0950-9240.
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma gamma-glutamyltransferase (GGT) was suggested to reflect the level of systemic oxidative stress. Oxidative stress induces changes in arterial structure and function and contributes to the development of hypertension. Therefore, GGT may be associated with arterial remodeling and blood pressure (BP) increment, even in absence of disease. To test this hypothesis, we evaluated, in 825 healthy subjects at low cardiometabolic risk, the associations of plasma GGT with carotid artery intima-media thickness (IMT), luminal diameter and prehypertension; in 154 subjects was evaluated also the association with aortic stiffness (cfPWV). Associations were controlled for insulin sensitivity, C-reactive protein, and life-style habits. In the main population, BP was remeasured after 3 years. Carotid diameter and cfPWV, but not IMT, were directly and independently related to plasma GGT. Subjects with prehypertension (N = 330) had higher GGT as compared with subjects with normal BP (22 [14] vs 17 [11] IU/L; adjusted P = 0.001), and within prehypertensive subjects, those who developed hypertension during 3 years had higher GGT than those without incident hypertension (27 [16] vs 21 [14] IU/L; adjusted P < 0.05). Within subjects with arterial stiffness measurement, those with prehypertension (N = 79) had higher both GGT and arterial stiffness (25 [14] vs 16 [20] IU/L and 9.11 ± 1.24 vs 7.90 ± 0.94 m/s; adjusted P < 0.01 and <0.05). In the view of previous evidence linking plasma GGT concentration to the level of systemic oxidative stress, our findings suggest a role of oxidative stress in subclinical arterial damage and in prehypertension, even in healthy subjects free of cardiometabolic risk. Arterial organ damage may represent the link between GGT and hypertension.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
Typ av publikation
Typ av innehåll
refereegranskat (26)
Författare/redaktör
Ferrannini, Ele (26)
Laakso, Markku (14)
Walker, Mark (13)
McCarthy, Mark I (12)
Langenberg, Claudia (11)
Wareham, Nicholas J. (10)
visa fler...
Kuusisto, Johanna (10)
Boehnke, Michael (10)
Groop, Leif (9)
Pedersen, Oluf (9)
Hansen, Torben (9)
Mohlke, Karen L (9)
Scott, Robert A (9)
Barroso, Ines (8)
Hattersley, Andrew T (8)
Balkau, Beverley (8)
Deloukas, Panos (7)
Franks, Paul W. (7)
Ingelsson, Erik (7)
Tuomilehto, Jaakko (7)
Yaghootkar, Hanieh (7)
Luan, Jian'an (7)
Gustafsson, Stefan (7)
Loos, Ruth J F (7)
Boeing, Heiner (6)
Lyssenko, Valeriya (6)
Salomaa, Veikko (6)
Perola, Markus (6)
Lind, Lars (6)
Raitakari, Olli T (6)
Rudan, Igor (6)
Linneberg, Allan (6)
Grarup, Niels (6)
Ridker, Paul M. (6)
Chasman, Daniel I. (6)
Saleheen, Danish (6)
Thorleifsson, Gudmar (6)
Thorsteinsdottir, Un ... (6)
Stefansson, Kari (6)
Samani, Nilesh J. (6)
Mahajan, Anubha (6)
Munroe, Patricia B. (6)
Palmer, Colin N. A. (6)
Kovacs, Peter (6)
Zhao, Jing Hua (6)
Morris, Andrew D (6)
Uitterlinden, André ... (6)
Hayward, Caroline (6)
Ferrières, Jean (6)
Boerwinkle, Eric (6)
visa färre...
Lärosäte
Lunds universitet (18)
Uppsala universitet (12)
Umeå universitet (9)
Karolinska Institutet (6)
Göteborgs universitet (5)
Kungliga Tekniska Högskolan (2)
visa fler...
Högskolan Dalarna (2)
Högskolan i Halmstad (1)
Stockholms universitet (1)
visa färre...
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (25)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy