SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferreras I.) "

Sökning: WFRF:(Ferreras I.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Jong, R. S., et al. (författare)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • Ingår i: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
2.
  • Catalán, Núria, 1985-, et al. (författare)
  • Behind the Scenes : mechanisms Regulating Climatic Patterns of Dissolved Organic Carbon Uptake in Headwater Streams
  • 2018
  • Ingår i: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 32:10, s. 1528-1541
  • Tidskriftsartikel (refereegranskat)abstract
    • Large variability in dissolved organic carbon (DOC) uptake rates has been reported for headwater streams, but the causes of this variability are still not well understood. Here we assessed acetate uptake rates across 11 European streams comprising different ecoregions by using whole-reach pulse acetate additions. We evaluated the main climatic and biogeochemical drivers of acetate uptake during two seasonal periods. Our results show a minor influence of sampling periods but a strong effect of climate and dissolved organic matter (DOM) composition on acetate uptake. In particular, mean annual precipitation explained half of the variability of the acetate uptake velocities (Vf(Acetate)) across streams. Temperate streams presented the lowest Vf(Acetate), together with humic-like DOM and the highest stream respiration rates. In contrast, higher Vf(Acetate) were found in semiarid streams, with protein-like DOM, indicating a dominance of reactive, labile compounds. This, together with lower stream respiration rates and molar ratios of DOC to nitrate, suggests a strong C limitation in semiarid streams, likely due to reduced inputs from the catchment. Overall, this study highlights the interplay of climate and DOM composition and its relevance to understand the biogeochemical mechanisms controlling DOC uptake in streams. Plain Language Summary Headwater streams receive and degrade organic carbon and nutrients from the surrounding catchments. That degradation can be assessed by measuring the uptake of simple compounds of carbon or nitrogen such as acetate or nitrate. Here we determine the variability in acetate and nitrate uptake rates across headwater streams and elucidate the mechanisms behind that variability. The balance between nutrients, the composition of the organic materials present in the streams, and the climatic background is at interplay.
  •  
3.
  • Morris, B. M., et al. (författare)
  • CHEOPS precision phase curve of the Super-Earth 55 Cancri e
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. 55 Cnc e is a transiting super-Earth (radius 1.88 R-circle plus and mass 8 M-circle plus) orbiting a G8V host star on a 17-h orbit. Spitzer observations of the planet's phase curve at 4.5 mu m revealed a time-varying occultation depth, and MOST optical observations are consistent with a time-varying phase curve amplitude and phase offset of maximum light. Both broadband and high-resolution spectroscopic analyses are consistent with either a high mean molecular weight atmosphere or no atmosphere for planet e. A long-term photometric monitoring campaign on an independent optical telescope is needed to probe the variability in this system. Aims. We seek to measure the phase variations of 55 Cnc e with a broadband optical filter with the 30 cm effective aperture space telescope CHEOPS and explore how the precision photometry narrows down the range of possible scenarios. Methods. We observed 55 Cnc for 1.6 orbital phases in March of 2020. We designed a phase curve detrending toolkit for CHEOPS photometry which allowed us to study the underlying flux variations in the 55 Cnc system. Results. We detected a phase variation with a full-amplitude of 72 +/- 7 ppm, but did not detect a significant secondary eclipse of the planet. The shape of the phase variation resembles that of a piecewise-Lambertian; however, the non-detection of the planetary secondary eclipse, and the large amplitude of the variations exclude reflection from the planetary surface as a possible origin of the observed phase variations. They are also likely incompatible with magnetospheric interactions between the star and planet, but may imply that circumplanetary or circumstellar material modulate the flux of the system. Conclusions. This year, further precision photometry of 55 Cnc from CHEOPS will measure variations in the phase curve amplitude and shape over time.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy