SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Feuk Lars) ;hsvcat:1"

Sökning: WFRF:(Feuk Lars) > Naturvetenskap

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zaghlool, Ammar, 1980-, et al. (författare)
  • Characterization of the nuclear and cytosolic transcriptomes in human brain tissue reveals new insights into the subcellular distribution of RNA transcripts
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptome analysis has mainly relied on analyzing RNA sequencing data from whole cells, overlooking the impact of subcellular RNA localization and its influence on our understanding of gene function, and interpretation of gene expression signatures in cells. Here, we separated cytosolic and nuclear RNA from human fetal and adult brain samples and performed a comprehensive analysis of cytosolic and nuclear transcriptomes. There are significant differences in RNA expression for protein-coding and lncRNA genes between cytosol and nucleus. We show that transcripts encoding the nuclear-encoded mitochondrial proteins are significantly enriched in the cytosol compared to the rest of protein-coding genes. Differential expression analysis between fetal and adult frontal cortex show that results obtained from the cytosolic RNA differ from results using nuclear RNA both at the level of transcript types and the number of differentially expressed genes. Our data provide a resource for the subcellular localization of thousands of RNA transcripts in the human brain and highlight differences in using the cytosolic or the nuclear transcriptomes for expression analysis.
  •  
2.
  • Höjer, Pontus (författare)
  • Exploring human variations by droplet barcoding
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biological variations are being explored at ever-increasing rates through the rapid advancement of analytical techniques. Techniques like massively parallel sequencing empower scientists to accurately differentiate individuals’ genetic compositions, cellular functionalities, and healthy tissue from diseased. The knowledge gained from these techniques brings us ever closer to grasping the complexities of life, contributing to human development. Still, to fully elucidate biological variations in different samples requires novel sensitive and high- throughput techniques, capable of placing everything in its correct context. One such technique gaining promise is droplet barcoding. Droplet barcoding leverages emulsion droplets to segregate samples into their functional components, coupled with barcodes that can group tagged molecules following sequencing. This technique constitutes a versatile tool for studying biological variations in both the phenotype and genotype. This thesis leverages droplet barcoding to explore variations relating to human biology. Droplet barcoding was used to study phenotype variations, looking at protein compositions in single extracellular vesicles (Paper I) and single cells (Paper II). Paper I studies extracellular vesicles which are naturally released from cells. They carry heterogeneous protein signatures that can inform about their cellular origin. Tens of thousands of extracellular vesicles were profiled, including approximately 25,000 from lung cancer patients. From these protein profiles, extracellular vesicles could be grouped into putative subtypes. Paper II presents a novel method for studying single cells which was used to characterize blood-derived immune cells. The method enabled the identification of most major immune cell lineages. Haplotype-resolved genetic variations were analyzed using a linked read sequencing method based on droplet barcoding. Linked-read sequencing conserves long-range information from short-read sequencing by co- barcoding subsections of long DNA fragments. Paper III presents an open-source pipeline (BLR) for whole genome haplotyping using linked reads. BLR generates accurate and continuous haplotypes, outperforming PacBio HiFi-based diploid assembly. We further show that integration with low-coverage long-read data can improve phasing accuracy in tandem repeats. With 10X Genomics linked reads, BLR generated more continuous haplotypes compared to other workflows. Paper IV applies linked read sequencing to reveal the haplotype complexities of cancer genomes. In two patients with colorectal cancer, we identified several large-scale aberrations impacting cancer-related genes. Additionally, several short somatic variants were found to impact nearly all oncogenic networks identified by TCGA. Demonstrating the importance of haplotype-resolved analysis for cancer genomics, one patient exhibited two nonsense mutations on separate haplotypes in the well-known colorectal cancer gene APC. 
  •  
3.
  • Ameur, Adam, et al. (författare)
  • De Novo Assembly of Two Swedish Genomes Reveals Missing Segments from the Human GRCh38 Reference and Improves Variant Calling of Population-Scale Sequencing Data
  • 2018
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The current human reference sequence (GRCh38) is a foundation for large-scale sequencing projects. However, recent studies have suggested that GRCh38 may be incomplete and give a suboptimal representation of specific population groups. Here, we performed a de novo assembly of two Swedish genomes that revealed over 10 Mb of sequences absent from the human GRCh38 reference in each individual. Around 6 Mb of these novel sequences (NS) are shared with a Chinese personal genome. The NS are highly repetitive, have an elevated GC-content, and are primarily located in centromeric or telomeric regions. Up to 1 Mb of NS can be assigned to chromosome Y, and large segments are also missing from GRCh38 at chromosomes 14, 17, and 21. Inclusion of NS into the GRCh38 reference radically improves the alignment and variant calling from short-read whole-genome sequencing data at several genomic loci. A re-analysis of a Swedish population-scale sequencing project yields > 75,000 putative novel single nucleotide variants (SNVs) and removes > 10,000 false positive SNV calls per individual, some of which are located in protein coding regions. Our results highlight that the GRCh38 reference is not yet complete and demonstrate that personal genome assemblies from local populations can improve the analysis of short-read whole-genome sequencing data.
  •  
4.
  • Johansson, Martin, 1976-, et al. (författare)
  • Spatial sexual dimorphism of X and Y homolog gene expression in the human central nervous system during early male development
  • 2016
  • Ingår i: Biology of Sex Differences. - : Springer Science and Business Media LLC. - 2042-6410. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Renewed attention has been directed to the functions of the Y chromosome in the central nervous system during early human male development, due to the recent proposed involvement in neurodevelopmental diseases. PCDH11Y and NLGN4Y are of special interest because they belong to gene families involved in cell fate determination and formation of dendrites and axon. Methods: We used RNA sequencing, immunocytochemistry and a padlock probing and rolling circle amplification strategy, to distinguish the expression of X and Y homologs in situ in the human brain for the first time. To minimize influence of androgens on the sex differences in the brain, we focused our investigation to human embryos at 8-11 weeks post-gestation. Results: We found that the X- and Y-encoded genes are expressed in specific and heterogeneous cellular sub-populations of both glial and neuronal origins. More importantly, we found differential distribution patterns of X and Y homologs in the male developing central nervous system. Conclusions: This study has visualized the spatial distribution of PCDH11X/Y and NLGN4X/Y in human developing nervous tissue. The observed spatial distribution patterns suggest the existence of an additional layer of complexity in the development of the male CNS.
  •  
5.
  • Spiegel, Ronen, et al. (författare)
  • Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy
  • 2014
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 22:7, s. 902-906
  • Tidskriftsartikel (refereegranskat)abstract
    • Isolated metabolic myopathies encompass a heterogeneous group of disorders, with mitochondrial myopathies being a subgroup, with depleted skeletal muscle energy production manifesting either by recurrent episodes of myoglobinuria or progressive muscle weakness. In this study, we investigated the genetic cause of a patient from a consanguineous family who presented with adolescent onset autosomal recessive mitochondrial myopathy. Analysis of enzyme activities of the five respiratory chain complexes in our patients' skeletal muscle showed severely impaired activities of iron sulfur (Fe-S)-dependent complexes I, II and III and mitochondrial aconitase. We employed exome sequencing combined with homozygosity mapping to identify a homozygous mutation, c.1A > T, in the FDX1L gene, which encodes the mitochondrial ferredoxin 2 (Fdx2) protein. The mutation disrupts the ATG initiation translation site resulting in severe reduction of Fdx2 content in the patient muscle and fibroblasts mitochondria. Fdx2 is the second component of the Fe-S cluster biogenesis machinery, the first being IscU that is associated with isolated mitochondrial myopathy. We suggest adding genetic analysis of FDX1L in cases of mitochondrial myopathy especially when associated with reduced activity of the respiratory chain complexes I, II and III.
  •  
6.
  • Zaghlool, Ammar, 1980-, et al. (författare)
  • Expression profiling and in situ screening of circular RNAs in human tissues
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Circular RNAs (circRNAs) were recently discovered as a class of widely expressed noncoding RNA and have been implicated in regulation of gene expression. However, the function of the majority of circRNAs remains unknown. Studies of circRNAs have been hampered by a lack of essential approaches for detection, quantification and visualization. We therefore developed a target-enrichment sequencing method suitable for screening of circRNAs and their linear counterparts in large number of samples. We also applied padlock probes and in situ sequencing to visualize and determine circRNA localization in human brain tissue at subcellular levels. We measured circRNA abundance across different human samples and tissues. Our results highlight the potential of this RNA class to act as a specific diagnostic marker in blood and serum, by detection of circRNAs from genes exclusively expressed in the brain. The powerful and scalable tools we present will enable studies of circRNA function and facilitate screening of circRNA as diagnostic biomarkers.
  •  
7.
  • Hård, Joanna, et al. (författare)
  • Long-read whole-genome analysis of human single cells
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-read sequencing has dramatically increased our understanding of human genome variation. Here, we demonstrate that long-read technology can give new insights into the genomic architecture of individual cells. Clonally expanded CD8+ T-cells from a human donor were subjected to droplet-based multiple displacement amplification (dMDA) to generate long molecules with reduced bias. PacBio sequencing generated up to 40% genome coverage per single-cell, enabling detection of single nucleotide variants (SNVs), structural variants (SVs), and tandem repeats, also in regions inaccessible by short reads. 28 somatic SNVs were detected, including one case of mitochondrial heteroplasmy. 5473 high-confidence SVs/cell were discovered, a sixteen-fold increase compared to Illumina-based results from clonally related cells. Single-cell de novo assembly generated a genome size of up to 598 Mb and 1762 (12.8%) complete gene models. In summary, our work shows the promise of long-read sequencing toward characterization of the full spectrum of genetic variation in single cells.
  •  
8.
  • Shebanits, Kateryna, et al. (författare)
  • Copy number determination of the gene for the human pancreatic polypeptide receptor NPY4R using read depth analysis and droplet digital PCR.
  • 2019
  • Ingår i: BMC Biotechnology. - : Springer Science and Business Media LLC. - 1472-6750. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Copy number variation (CNV) plays an important role in human genetic diversity and has been associated with multiple complex disorders. Here we investigate a CNV on chromosome 10q11.22 that spans NPY4R, the gene for the appetite-regulating pancreatic polypeptide receptor Y4. This genomic region has been challenging to map due to multiple repeated elements and its precise organization has not yet been resolved. Previous studies using microarrays were interpreted to show that the most common copy number was 2 per genome.Results: We have investigated 18 individuals from the 1000 Genomes project using the well-established method of read depth analysis and the new droplet digital PCR (ddPCR) method. We find that the most common copy number for NPY4R is 4. The estimated number of copies ranged from three to seven based on read depth analyses with Control-FREEC and CNVnator, and from four to seven based on ddPCR. We suggest that the difference between our results and those published previously can be explained by methodological differences such as reference gene choice, data normalization and method reliability. Three high-quality archaic human genomes (two Neanderthal and one Denisova) display four copies of the NPY4R gene indicating that a duplication occurred prior to the human-Neanderthal/Denisova split.Conclusions: We conclude that ddPCR is a sensitive and reliable method for CNV determination, that it can be used for read depth calibration in CNV studies based on already available whole-genome sequencing data, and that further investigation of NPY4R copy number variation and its consequences are necessary due to the role of Y4 receptor in food intake regulation.
  •  
9.
  • Ameur, Adam, et al. (författare)
  • SweGen : a whole-genome data resource of genetic variability in a cross-section of the Swedish population
  • 2017
  • Ingår i: European Journal of Human Genetics. - : NATURE PUBLISHING GROUP. - 1018-4813 .- 1476-5438. ; 25:11, s. 1253-1260
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the SweGen data set, a comprehensive map of genetic variation in the Swedish population. These data represent a basic resource for clinical genetics laboratories as well as for sequencing-based association studies by providing information on genetic variant frequencies in a cohort that is well matched to national patient cohorts. To select samples for this study, we first examined the genetic structure of the Swedish population using high-density SNP-array data from a nation-wide cohort of over 10 000 Swedish-born individuals included in the Swedish Twin Registry. A total of 1000 individuals, reflecting a cross-section of the population and capturing the main genetic structure, were selected for whole-genome sequencing. Analysis pipelines were developed for automated alignment, variant calling and quality control of the sequencing data. This resulted in a genome-wide collection of aggregated variant frequencies in the Swedish population that we have made available to the scientific community through the website https://swefreq.nbis.se. A total of 29.2 million single-nucleotide variants and 3.8 million indels were detected in the 1000 samples, with 9.9 million of these variants not present in current databases. Each sample contributed with an average of 7199 individual-specific variants. In addition, an average of 8645 larger structural variants (SVs) were detected per individual, and we demonstrate that the population frequencies of these SVs can be used for efficient filtering analyses. Finally, our results show that the genetic diversity within Sweden is substantial compared with the diversity among continental European populations, underscoring the relevance of establishing a local reference data set.
  •  
10.
  • Cumlin, Tomas, et al. (författare)
  • From SARS-CoV-2 to Global Preparedness : A Graphical Interface for Standardised High-Throughput Bioinformatics Analysis in Pandemic Scenarios and Surveillance of Drug Resistance
  • 2024
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 25:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 pandemic highlighted the need for a rapid, convenient, and scalable diagnostic method for detecting a novel pathogen amidst a global pandemic. While command-line interface tools offer automation for SARS-CoV-2 Oxford Nanopore Technology sequencing data analysis, they are inapplicable to users with limited programming skills. A solution is to establish such automated workflows within a graphical user interface software. We developed two workflows in the software Geneious Prime 2022.1.1, adapted for data obtained from the Midnight and Artic's nCoV-2019 sequencing protocols. Both workflows perform trimming, read mapping, consensus generation, and annotation on SARS-CoV-2 Nanopore sequencing data. Additionally, one workflow includes phylogenetic assignment using the bioinformatic tools pangolin and Nextclade as plugins. The basic workflow was validated in 2020, adhering to the requirements of the European Centre for Disease Prevention and Control for SARS-CoV-2 sequencing and analysis. The enhanced workflow, providing phylogenetic assignment, underwent validation at Uppsala University Hospital by analysing 96 clinical samples. It provided accurate diagnoses matching the original results of the basic workflow while also reducing manual clicks and analysis time. These bioinformatic workflows streamline SARS-CoV-2 Nanopore data analysis in Geneious Prime, saving time and manual work for operators lacking programming knowledge.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22
Typ av publikation
tidskriftsartikel (20)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Feuk, Lars (21)
Ameur, Adam (8)
Gyllensten, Ulf B. (2)
Larhammar, Dan, 1956 ... (2)
Nilsson, Mats (2)
Darj, Elisabeth, 195 ... (2)
visa fler...
Grabherr, Manfred (2)
Johansson, Åsa (2)
Niazi, Adnan (2)
Vezzi, Francesco (2)
Jazin, Elena (2)
Dahlberg, Johan (2)
Nordlund, Jessica (2)
Bunikis, Ignas (2)
Häggqvist, Susana (2)
Che, Huiwen (2)
Martin, Marcel (2)
Olason, Pall (2)
Orzechowski Westholm ... (2)
Komorowski, Jan (2)
Tellgren-Roth, Chris ... (1)
Cavelier, Lucia (1)
Ladenvall, Claes, Ph ... (1)
Green, Richard E. (1)
Lundeberg, Joakim (1)
Nilsson, Daniel (1)
Annerén, Göran (1)
Carlsson, Lena M S, ... (1)
Andersson-Assarsson, ... (1)
Larsson, I. (1)
Magnusson, Patrik K ... (1)
Lennerstrand, Johan (1)
Lundin, Sverker (1)
Kähäri, Andreas (1)
Dahl, Niklas (1)
Karlsson, Robert (1)
Gyllensten, Ulf (1)
Nystedt, Björn, 1978 ... (1)
Larhammar, Dan (1)
Liljedahl, Ulrika (1)
Syvänen, Ann-Christi ... (1)
Johansson, Martin, 1 ... (1)
Lampa, Samuel (1)
Jakobsson, Mattias (1)
Rafati, Nima (1)
Höijer, Ida (1)
Johansson, Anna C. V ... (1)
Viklund, Johan, 1982 ... (1)
Lundin, Pär (1)
Thutkawkorapin, Jess ... (1)
visa färre...
Lärosäte
Uppsala universitet (21)
Stockholms universitet (5)
Karolinska Institutet (5)
Kungliga Tekniska Högskolan (3)
Linköpings universitet (2)
Göteborgs universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy