SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Figueira P.) "

Sökning: WFRF:(Figueira P.)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
3.
  • Rauer, H., et al. (författare)
  • The PLATO 2.0 mission
  • 2014
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Tidskriftsartikel (refereegranskat)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
4.
  • Leleu, A., et al. (författare)
  • Six transiting planets and a chain of Laplace resonances in TOI-178
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152 to 2.87 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02 to 0.177 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes. -0.070 -0.13 -0.23 -0.061 +0.073 +0.14 +0.28 +0.055
  •  
5.
  • Marconi, Alessandro, et al. (författare)
  • ELT-HIRES, the high resolution spectrograph for the ELT : Phase A study and path to construction
  • 2020
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy VIII. - : SPIE - International Society for Optical Engineering. - 9781510636828 - 9781510636811
  • Konferensbidrag (refereegranskat)abstract
    • HIRES is the high-resolution spectrograph of the European Extremely Large Telescope at optical and near-infrared wavelengths. It consists of three fibre-fed spectrographs providing a wavelength coverage of 0.4-1.8 µm (goal 0.35-2.4 µm) at a spectral resolution of 100,000. The fibre-feeding allows HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU in the NIR. Therefore, it will be able to operate both in seeing- and diffraction-limited modes. Its modularity will ensure that HIRES can be placed entirely on the Nasmyth platform, if enough mass and volume is available, or part on the Nasmyth and part in the Coud`e room. ELT-HIRES has a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (PopIII), tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
  •  
6.
  • Esposito, M., et al. (författare)
  • HD 219666 b: a hot-Neptune from TESS Sector 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623:623
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD219666 (M-star = 0.92 +/- 0.03 M-circle dot, R-star = 1.03 +/- 0.03 R-circle dot, tau(star) = 10 +/- 2 Gyr). With a mass of M-b = 16.6 +/- 1.3 M-circle plus, a radius of R-b = 4.71 +/- 0.17 R-circle plus, and an orbital period of P-orb similar or equal to 6 days, HD219666 b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet Survey Satellite (TESS) observed HD219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events, equally spaced in time. We confirmed the planetary nature of the candidate by gathering precise radial-velocity measurements with the High Accuracy Radial velocity Planet Searcher (HARPS) at ESO 3.6 m. We used the co-added HARPS spectrum to derive the host star fundamental parameters (T-eff = 5527 +/- 65 K, log g(star) = 4.40 +/- 0.11 (cgs), [Fe/H] = 0.04 +/- 0.04 dex, log R-HK' = -5.07 +/- 0.03), as well as the abundances of many volatile and refractory elements. The host star brightness (V = 9.9) makes it suitable for further characterisation by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric metal-to-hydrogen content and thermal structure could provide us with important clues on the formation mechanisms of this class of objects.
  •  
7.
  • Hoyer, S., et al. (författare)
  • TOI-220b: a warm sub-Neptune discovered by TESS
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:3, s. 3361-3379
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we report the discovery of TOI-220b, a new sub-Neptune detected by the Transiting Exoplanet Survey Satellite (TESS) and confirmed by radial velocity follow-up observations with the HARPS spectrograph. Based on the combined analysis of TESS transit photometry and high precision radial velocity measurements, we estimate a planetary mass of 13.8 +/- 1.0M(circle plus) and radius of 3.03 +/- 0.15R(circle plus), implying a bulk density of 2.73 +/- 0.47. TOI-220b orbits a relative bright (V=10.4) and old (10.1 +/- 1.4Gyr) K dwarf star with a period of similar to 10.69d. Thus, TOI-220b is a new warm sub-Neptune with very precise mass and radius determinations. A Bayesian analysis of the TOI-220b internal structure indicates that due to the strong irradiation it receives, the low density of this planet could be explained with a steam atmosphere in radiative-convective equilibrium and a supercritical water layer on top of a differentiated interior made of a silicate mantle and a small iron core.
  •  
8.
  • Barragan, O., et al. (författare)
  • The young HD 73583 (TOI-560) planetary system: two 10-M-circle plus mini-Neptunes transiting a 500-Myr-old, bright, and active K dwarf
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 514:2, s. 1606-1627
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two transiting planets observed by TESS in the light curves of the young and bright (V = 9.67) star HD73583 (TOI-560). We perform an intensive spectroscopic and photometric space- and ground-based follow-up in order to confirm and characterize the system. We found that HD73583 is a young (similar to 500 Myr) active star with a rotational period of 12.08 +/- 0.11 d, and a mass and radius of 0.73 +/- 0.02 M-circle dot and 0.65 +/- 0.02 R-circle dot, respectively. HD 73583 b (P-b = 6.3980420(-0.0000062)(+0.0000067 )d) has a mass and radius of 10.2(-3.1)(+3.4) M-circle plus and 2.79 +/- 0.10 R-circle plus, respectively, which gives a density of 2.58(-0.81)(+0.95) g cm(-3). HD 73583 c (P-c = 18.87974(-0.00074)(+0.00086) d) has a mass and radius of 9.7(-1.7)(+1.8) M-circle plus and 2.39(-0.09)(+0.10) R-circle plus, respectively, which translates to a density of 3.88(-0.80)(+0.91) g cm(-3). Both planets are consistent with worlds made of a solid core surrounded by a volatile envelope. Because of their youth and host star brightness, they both are excellent candidates to perform transmission spectroscopy studies. We expect ongoing atmospheric mass-loss for both planets caused by stellar irradiation. We estimate that the detection of evaporating signatures on H and He would be challenging, but doable with present and future instruments.
  •  
9.
  • Marconi, A., et al. (författare)
  • ELT-HIRES, the high resolution spectrograph for the ELT : results from the Phase A study
  • 2018
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VII. - : SPIE-INT SOC OPTICAL ENGINEERING. - 9781510619586
  • Konferensbidrag (refereegranskat)abstract
    • We present the results from the phase A study of ELT-HIRES, an optical-infrared High Resolution Spectrograph for ELT, which has just been completed by a consortium of 30 institutes from 12 countries forming a team of about 200 scientists and engineers. The top science cases of ELT-HIRES will be the detection of life signatures from exoplanet atmospheres, tests on the stability of Nature's fundamental couplings, the direct detection of the cosmic acceleration. However, the science requirements of these science cases enable many other groundbreaking science cases. The baseline design, which allows to fulfil the top science cases, consists in a modular fiber fed cross-dispersed echelle spectrograph with two ultra-stable spectral arms providing a simultaneous spectral range of 0.4-1.8 pm at a spectral resolution of 100, 000. The fiber-feeding allows ELT-HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU.
  •  
10.
  • Zerbi, F. M., et al. (författare)
  • HIRES : The High Resolution Spectrograph for E-ELT
  • 2014
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • The current instrumentation plan for the E-ELT foresees a High Resolution Spectrograph conventionally indicated as HIRES. Shaped on the study of extra-solar planet atmospheres, Pop-III stars and fundamental physical constants, HIRES is intended to embed observing modes at high-resolution (up to R=150000) and large spectral range (from the blue limit to the K band) useful for a large suite of science cases that can exclusively be tackled by the E-ELT. We present in this paper the solution for HIRES envisaged by the "HIRES initiative", the international collaboration established in 2013 to pursue a HIRES on E-ELT.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (22)
konferensbidrag (4)
bokkapitel (1)
Typ av innehåll
refereegranskat (25)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Figueira, P. (17)
Santos, N. C. (12)
Udry, S. (12)
Bouchy, F. (11)
Adibekyan, V. (9)
Fridlund, Malcolm, 1 ... (9)
visa fler...
Palle, E. (8)
Esposito, M. (7)
Gandolfi, D. (7)
Bonfils, X. (7)
Sousa, S.G. (7)
Cabrera, J (7)
Persson, Carina, 196 ... (7)
Winn, J. N. (7)
Lillo-Box, J. (7)
Barros, S.C.C. (6)
Redfield, S. (6)
Barragán, O. (6)
Latham, D. W. (6)
Luque, R. (6)
Bayliss, D. (6)
Nielsen, L. D. (6)
Dumusque, X. (6)
Martins, C. J. A. P. (5)
Sousa, S (5)
Hirano, T (5)
Delgado-Mena, E. (5)
Demangeon, O. (5)
Rauer, H. (5)
Mathur, S (5)
Barrado, D. (5)
Grziwa, S. (5)
Livingston, J.H. (5)
Murgas, F. (5)
Armstrong, D. J. (5)
Twicken, J. D. (5)
Knudstrup, E. (4)
Allende Prieto, C. (4)
Hoyer, S. (4)
Deleuil, M. (4)
Lam, K. W.F. (4)
Segransan, D. (4)
Cochran, W. D. (4)
Georgieva, Iskra, 19 ... (4)
Van Eylen, V. (4)
Rodler, F. (4)
Goffo, E. (4)
Hatzes, A. P. (4)
Hojjatpanah, S. (4)
Osborn, A. (4)
visa färre...
Lärosäte
Chalmers tekniska högskola (11)
Uppsala universitet (6)
Lunds universitet (4)
Stockholms universitet (3)
Göteborgs universitet (2)
Umeå universitet (2)
visa fler...
Linköpings universitet (2)
Karolinska Institutet (2)
Luleå tekniska universitet (1)
visa färre...
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Teknik (4)
Medicin och hälsovetenskap (4)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy