SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fioretos Thoas) "

Sökning: WFRF:(Fioretos Thoas)

  • Resultat 1-10 av 165
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abolhalaj, Milad, et al. (författare)
  • Transcriptional profiling demonstrates altered characteristics of CD8 + cytotoxic T-cells and regulatory T-cells in TP53-mutated acute myeloid leukemia
  • 2022
  • Ingår i: Cancer Medicine. - : Wiley. - 2045-7634. ; 11:15, s. 3023-3032
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Acute myeloid leukemia (AML) patients have limited effect from T-cell-based therapies, such as PD-1 and CTLA-4 blockade. However, recent data indicate that AML patients with TP53 mutation have higher immune infiltration and other immunomodulatory therapies could thus potentially be effective. Here, we performed the transcriptional analysis of distinct T-cell subpopulations from TP53-mutated AML to identify gene expression signatures suggestive of altered functional properties.Methods: CD8+ cytotoxic T lymphocytes (CTLs), conventional helper T cells (Th), and regulatory T cells (Tregs) were sorted from peripheral blood of AML patients with TP53 mutation (n = 5) and healthy donors (n = 3), using FACS, and the different subpopulations were subsequently subjected to RNA-sequencing. Differentially expressed genes were identified and gene set enrichment analysis (GSEA) was performed to outline altered pathways and exhaustion status. Also, expression levels for a set of genes encoding established and emerging immuno-oncological targets were defined.Results: The results showed altered transcriptional profiles for each of the T-cell subpopulations from TP53-mutated AML as compared to control subjects. IFN-α and IFN-γ signaling were stronger in TP53-mutated AML for both CTLs and Tregs. Furthermore, in TP53-mutated AML as compared to healthy controls, Tregs showed gene expression signatures suggestive of metabolic adaptation to their environment, whereas CTLs exhibited features of exhaustion/dysfunction with a stronger expression of TIM3 as well as enrichment of a gene set related to exhaustion.Conclusions: The results provide insights on mechanisms underlying the inadequate immune response to leukemic cells in TP53-mutated AML and open up for further exploration toward novel treatment regimens for these patients.
  •  
2.
  •  
3.
  •  
4.
  • Andersson, Anna, et al. (författare)
  • Gene expression profiling of leukemic cell lines reveals conserved molecular signatures among subtypes with specific genetic aberrations
  • 2005
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 19:6, s. 1042-1050
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematologic malignancies are characterized by fusion genes of biological/clinical importance. Immortalized cell lines with such aberrations are today widely used to model different aspects of leukemogenesis. Using cDNA microarrays, we determined the gene expression profiles of 40 cell lines as well as of primary leukemias harboring 11q23/MLL rearrangements, t(1;19)[TCF3/PBX1], t(12;21)[ETV6/RUNX1], t(8;21)[RUNX1/CBFA2T1], t(8;14) [IGH@/MYC], t(8;14)[TRA@/MYC], t(9;22)[BCR/ABL1], t(10;11) [PICALM/MLLT10], t(15;17)[PML/RARA], or inv(16)[CBFB/MYH11]. Unsupervised classification revealed that hematopoietic cell lines of diverse origin, but with the same primary genetic changes, segregated together, suggesting that pathogenetically important regulatory networks remain conserved despite numerous passages. Moreover, primary leukemias cosegregated with cell lines carrying identical genetic rearrangements, further supporting that critical regulatory pathways remain intact in hematopoietic cell lines. Transcriptional signatures correlating with clinical subtypes/primary genetic changes were identified and annotated based on their biological/molecular properties and chromosomal localization. Furthermore, the expression profile of tyrosine kinase-encoding genes was investigated, identifying several differentially expressed members, segregating with primary genetic changes, which may be targeted with tyrosine kinase inhibitors. The identified conserved signatures are likely to reflect regulatory networks of importance for the transforming abilities of the primary genetic changes and offer important pathogenetic insights as well as a number of targets for future rational drug design.
  •  
5.
  • Andersson, Anna, et al. (författare)
  • Gene expression signatures in childhood acute leukemias are largely unique and distinct from those of normal tissues and other malignancies.
  • 2010
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Childhood leukemia is characterized by the presence of balanced chromosomal translocations or by other structural or numerical chromosomal changes. It is well know that leukemias with specific molecular abnormalities display profoundly different global gene expression profiles. However, it is largely unknown whether such subtype-specific leukemic signatures are unique or if they are active also in non-hematopoietic normal tissues or in other human cancer types. METHODS: Using gene set enrichment analysis, we systematically explored whether the transcriptional programs in childhood acute lymphoblastic leukemia (ALL) and myeloid leukemia (AML) were significantly similar to those in different flow-sorted subpopulations of normal hematopoietic cells (n = 8), normal non-hematopoietic tissues (n = 22) or human cancer tissues (n = 13). RESULTS: This study revealed that e.g., the t(12;21) [ETV6-RUNX1] subtype of ALL and the t(15;17) [PML-RARA] subtype of AML had transcriptional programs similar to those in normal Pro-B cells and promyelocytes, respectively. Moreover, the 11q23/MLL subtype of ALL showed similarities with non-hematopoietic tissues. Strikingly however, most of the transcriptional programs in the other leukemic subtypes lacked significant similarity to approximately 100 gene sets derived from normal and malignant tissues. CONCLUSIONS: This study demonstrates, for the first time, that the expression profiles of childhood leukemia are largely unique, with limited similarities to transcriptional programs active in normal hematopoietic cells, non-hematopoietic normal tissues or the most common forms of human cancer. In addition to providing important pathogenetic insights, these findings should facilitate the identification of candidate genes or transcriptional programs that can be used as unique targets in leukemia.
  •  
6.
  • Andersson, Anna, et al. (författare)
  • Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status.
  • 2007
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 21:6, s. 1198-1203
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene expression analyses were performed on 121 consecutive childhood leukemias (87 B-lineage acute lymphoblastic leukemias (ALLs), 11 T-cell ALLs and 23 acute myeloid leukemias (AMLs)), investigated during an 8-year period at a single center. The supervised learning algorithm k-nearest neighbor was utilized to build gene expression predictors that could classify the ALLs/AMLs according to clinically important subtypes with high accuracy. Validation experiments in an independent data set verified the high prediction accuracies of our classifiers. B-lineage ALLs with uncharacteristic cytogenetic aberrations or with a normal karyotype displayed heterogeneous gene expression profiles, resulting in low prediction accuracies. Minimal residual disease status (MRD) in T-cell ALLs with a high (40.1%) MRD at day 29 could be classified with 100% accuracy already at the time of diagnosis. In pediatric leukemias with uncharacteristic cytogenetic aberrations or with a normal karyotype, unsupervised analysis identified two novel subgroups: one consisting mainly of cases remaining in complete remission (CR) and one containing a few patients in CR and all but one of the patients who relapsed. This study of a consecutive series of childhood leukemias confirms and extends further previous reports demonstrating that global gene expression profiling provides a valuable tool for genetic and clinical classification of childhood leukemias.
  •  
7.
  • Andersson, Anna, et al. (författare)
  • Paired multiplex reverse-transcriptase polymerase chain reaction (PMRT-PCR) analysis as a rapid and accurate diagnostic tool for the detection of MLL fusion genes in hematologic malignancies
  • 2001
  • Ingår i: Leukemia. - 1476-5551. ; 15:8, s. 1293-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • The MLL gene in chromosome band 11q23 is frequently rearranged in acute lymphoblastic and acute myeloid leukemias. To date, more than 50 different chromosomal regions are known to participate in translocations involving 11q23, many of which affect MLL. The pathogenetically important outcome of these rearrangements is most likely the creation of a fusion gene consisting of the 5' part of the MLL gene and the 3' end of the partner gene. Although abnormalities of the MLL gene as such are generally associated with poor survival, recent data suggest that the prognostic impact varies among the different fusion genes generated. Hence, detection of the specific chimeric gene produced is important for proper prognostication and clinical decision making. We have developed a paired multiplex reverse-transcriptase polymerase chain reaction analysis to facilitate a rapid and accurate detection of the most frequent MLL fusion genes in adult and childhood acute leukemias. To increase the specificity, two sets of primers were designed for each fusion gene, and these paired primer sets were run in parallel in two separate multiplex one-step PCR reactions. Using the described protocol, we were able to amplify successfully, in one single assay, the six clinically relevant fusion genes generated by the t(4;11)(q21;q23) [MLL/AF4], t(6;11)(q27;q23) [MLL/AF6], t(9;11)(p21-22;q23) [MLL/AF9], t(10;11)(p11-13;q23) [MLL/AF10], t(11;19)(q23;p13.1) [MLL/ELL], and t(11;19)(q23; p13.3) [MLL/ENL] in cell lines, as well as in patient material.
  •  
8.
  • Andersson, Anna, et al. (författare)
  • The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:4, s. 192-330
  • Tidskriftsartikel (refereegranskat)abstract
    • Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole-genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R cases) and 20 older children (MLL-R cases) with leukemia. Our data show that infant MLL-R ALL has one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite this paucity of mutations, we detected activating mutations in kinase-PI3K-RAS signaling pathway components in 47% of cases. Surprisingly, these mutations were often subclonal and were frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (mean of 6.5 mutations/case versus 1.3 mutations/case, P = 7.15 × 10(-5)) and had frequent mutations (45%) in epigenetic regulators, a category of genes that, with the exception of MLL, was rarely mutated in infant MLL-R ALL.
  •  
9.
  • Andreasson, Patrik, et al. (författare)
  • BCR/ABL-negative chronic myeloid leukemia with ETV6/ABL fusion
  • 1997
  • Ingår i: Genes, Chromosomes and Cancer. - 1045-2257. ; 20:3, s. 299-304
  • Tidskriftsartikel (refereegranskat)abstract
    • A BCR/ABL-negative chronic myeloid leukemia (CML) with t(12;14) (p12;q11-13) as the sole chromosomal abnormality was investigated by fluorescence in situ hybridization (FISH), which disclosed a cryptic insertion of ETV6 (previously called TEL), located at 12p12, into ABL at chromosome band 9q34. ETV6/ABL fusion was confirmed by RT-PCR, revealing that the first five exons of ETV6 were fused in frame with ABL at exon 2. Wild-type ETV6 was expressed, in accordance with the FISH results showing no deletion of the second ETV6 allele. ETV6/ABL chimeric transcripts have previously been reported in acute leukemias, but never before in CML. The present case suggests that ETV6/ABL positivity may constitute a new genetic subgroup of BCR-negative CML.
  •  
10.
  • Askmyr, Maria, et al. (författare)
  • Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells.
  • 2014
  • Ingår i: Blood Cancer Journal. - : Springer Science and Business Media LLC. - 2044-5385. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34(+) cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 165
Typ av publikation
tidskriftsartikel (140)
konferensbidrag (10)
forskningsöversikt (10)
bokkapitel (3)
annan publikation (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (158)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Fioretos, Thoas (165)
Johansson, Bertil (61)
Lilljebjörn, Henrik (50)
Mitelman, Felix (42)
Lassen, Carin (31)
Rissler, Marianne (29)
visa fler...
Paulsson, Kajsa (22)
Andersson, Anna (22)
Richter, Johan (21)
Höglund, Mattias (17)
Ågerstam, Helena (16)
Järås, Marcus (15)
Strömbeck, Bodil (14)
Olofsson, Tor (13)
Behrendtz, Mikael (13)
Sandén, Carl (11)
Heldrup, Jesper (11)
Hansen, Nils (11)
Askmyr, Maria (10)
Landberg, Niklas (10)
Orsmark-Pietras, Chr ... (10)
Cavelier, Lucia (9)
Heim, Sverre (9)
Rosenquist, Richard (9)
von Palffy, Sofia (9)
Panagopoulos, Ioanni ... (9)
Biloglav, Andrea (8)
Juliusson, Gunnar (8)
Lindgren, David (8)
Davidsson, Josef (8)
Cammenga, Jörg (8)
OLSSON, LINDA (8)
Forestier, Erik (7)
Borg, Åke (7)
Ehinger, Mats (7)
Billström, Rolf (7)
Barbany, Gisela (7)
Högberg, Carl (7)
Isaksson, Margareth (7)
Nilsson, Björn (6)
Fontes, Magnus (6)
Garwicz, Stanislaw (6)
Ehrencrona, Hans (6)
Porkka, Kimmo (6)
Mandahl, Nils (6)
Gullberg, Urban (5)
Wirta, Valtteri (5)
Billstrom, R (5)
Nilsson, Per-Gunnar (5)
Hagemeijer, Anne (5)
visa färre...
Lärosäte
Lunds universitet (158)
Linköpings universitet (28)
Karolinska Institutet (27)
Uppsala universitet (12)
Umeå universitet (8)
Kungliga Tekniska Högskolan (7)
visa fler...
Göteborgs universitet (6)
Örebro universitet (3)
Chalmers tekniska högskola (3)
Malmö universitet (1)
visa färre...
Språk
Engelska (161)
Svenska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (158)
Naturvetenskap (9)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy