SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fleituch Tadeusz) "

Sökning: WFRF:(Fleituch Tadeusz)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boyero, Luz, et al. (författare)
  • Riparian plant litter quality increases with latitude
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107 degrees) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen: phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.
  •  
2.
  • Costello, David M., et al. (författare)
  • Global patterns and controls of nutrient immobilization on decomposing cellulose in riverine ecosystems
  • 2022
  • Ingår i: Global Biogeochemical Cycles. - : John Wiley & Sons. - 0886-6236 .- 1944-9224. ; 36:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature. Collectively, we demonstrated that exogenous nutrient supply and immobilization are critical control points for decomposition of organic matter.
  •  
3.
  • Hladyz, Sally, et al. (författare)
  • Stream ecosystem functioning in an agricultural landscape : the importance of terrestrial-aquatic linkages
  • 2011
  • Ingår i: Ecosystems in a human-modified landscape. - San Diego : Academic Press. - 9780123747945 ; 44, s. 211-276
  • Bokkapitel (refereegranskat)abstract
    • The loss of native riparian vegetation and its replacement with non-native species or grazing land for agriculture is a worldwide phenomenon, but one that is prevalent in Europe, reflecting the heavily-modified nature of the continent's landscape. The consequences of these riparian alterations for freshwater ecosystems remain largely unknown, largely because bioassessment has traditionally focused on the impacts of organic pollution on community structure. We addressed the need for a broader perspective, which encompasses changes at the catchment scale, by comparing ecosystem processes in woodland reference sites with those with altered riparian zones. We assessed a range of riparian modifications, including clearance for pasture and replacement of woodland with a range of low diversity plantations, in 100 streams to obtain a continental-scale perspective of the major types of alterations across Europe. Subsequently, we focused on pasture streams, as an especially prevalent widespread riparian alteration, by characterising their structural (e.g. invertebrate and fish communities) and functional (e.g. litter decomposition, algal production, herbivory) attributes in a country (Ireland) dominated by this type of landscape modification, via field and laboratory experiments. We found that microbes became increasingly important as agents of decomposition relative to macrofauna (invertebrates) in impacted sites in general and in pasture streams in particular. Resource quality of grass litter (e.g., carbon : nutrient ratios, lignin and cellulose content) was a key driver of decomposition rates in pasture streams. These systems also relied more heavily on autochthonous algal production than was the case in woodland streams, which were more detrital based. These findings suggest that these pasture streams might be fundamentally different from their native, ancestral woodland state, with a shift towards greater reliance on autochthonous-based processes. This could have a destabilizing effect on the dynamics of the food web relative to the slower, detrital-based pathways that dominate in woodland streams.
  •  
4.
  • Hladyz, Sally, et al. (författare)
  • Stream ecosystem functioning in an agricultural landscape : the importance of terrestrial-aquatic linkages
  • 2011
  • Ingår i: Ecosystems in a human-modified landscape. - San Diego : Academic Press. - 9780123747945 ; 44, s. 211-276
  • Bokkapitel (populärvet., debatt m.m.)abstract
    • The loss of native riparian vegetation and its replacement with non-native species or grazing land for agriculture is a worldwide phenomenon, but one that is prevalent in Europe, reflecting the heavily-modified nature of the continent's landscape. The consequences of these riparian alterations for freshwater ecosystems remain largely unknown, largely because bioassessment has traditionally focused on the impacts of organic pollution on community structure. We addressed the need for a broader perspective, which encompasses changes at the catchment scale, by comparing ecosystem processes in woodland reference sites with those with altered riparian zones. We assessed a range of riparian modifications, including clearance for pasture and replacement of woodland with a range of low diversity plantations, in 100 streams to obtain a continental-scale perspective of the major types of alterations across Europe. Subsequently, we focused on pasture streams, as an especially prevalent widespread riparian alteration, by characterising their structural (e.g. invertebrate and fish communities) and functional (e.g. litter decomposition, algal production, herbivory) attributes in a country (Ireland) dominated by this type of landscape modification, via field and laboratory experiments. We found that microbes became increasingly important as agents of decomposition relative to macrofauna (invertebrates) in impacted sites in general and in pasture streams in particular. Resource quality of grass litter (e.g., carbon : nutrient ratios, lignin and cellulose content) was a key driver of decomposition rates in pasture streams. These systems also relied more heavily on autochthonous algal production than was the case in woodland streams, which were more detrital based. These findings suggest that these pasture streams might be fundamentally different from their native, ancestral woodland state, with a shift towards greater reliance on autochthonous-based processes. This could have a destabilizing effect on the dynamics of the food web relative to the slower, detrital-based pathways that dominate in woodland streams.
  •  
5.
  • Tiegs, Scott D., et al. (författare)
  • Global patterns and drivers of ecosystem functioning in rivers and riparian zones
  • 2019
  • Ingår i: Science Advances. - Washington : American Association of Advancement in Science. - 2375-2548. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
  •  
6.
  • Woodward, Guy, et al. (författare)
  • Continental-scale effects of nutrient pollution on stream ecosystem functioning
  • 2012
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 336:6087, s. 1438-1440
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process—leaf-litter breakdown—in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy