SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fornage Myriam) ;hsvcat:3"

Sökning: WFRF:(Fornage Myriam) > Medicin och hälsovetenskap

  • Resultat 1-10 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Turcot, Valerie, et al. (författare)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
2.
  • Artigas Soler, María, et al. (författare)
  • Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function.
  • 2011
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:11, s. 1082-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 × 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.
  •  
3.
  • Chauhan, Ganesh, et al. (författare)
  • Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies
  • 2016
  • Ingår i: The Lancet Neurology. - 1474-4465 .- 1474-4422. ; 15:7, s. 695-707
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Genetic determinants of stroke, the leading neurological cause of death and disability, are poorly understood and have seldom been explored in the general population. Our aim was to identify additional loci for stroke by doing a meta-analysis of genome-wide association studies. Methods For the discovery sample, we did a genome-wide analysis of common genetic variants associated with incident stroke risk in 18 population-based cohorts comprising 84 961 participants, of whom 4348 had stroke. Stroke diagnosis was ascertained and validated by the study investigators. Mean age at stroke ranged from 45·8 years to 76·4 years, and data collection in the studies took place between 1948 and 2013. We did validation analyses for variants yielding a significant association (at p<5 × 10−6) with all-stroke, ischaemic stroke, cardioembolic ischaemic stroke, or non-cardioembolic ischaemic stroke in the largest available cross-sectional studies (70 804 participants, of whom 19 816 had stroke). Summary-level results of discovery and follow-up stages were combined using inverse-variance weighted fixed-effects meta-analysis, and in-silico lookups were done in stroke subtypes. For genome-wide significant findings (at p<5 × 10−8), we explored associations with additional cerebrovascular phenotypes and did functional experiments using conditional (inducible) deletion of the probable causal gene in mice. We also studied the expression of orthologs of this probable causal gene and its effects on cerebral vasculature in zebrafish mutants. Findings We replicated seven of eight known loci associated with risk for ischaemic stroke, and identified a novel locus at chromosome 6p25 (rs12204590, near FOXF2) associated with risk of all-stroke (odds ratio [OR] 1·08, 95% CI 1·05–1·12, p=1·48 × 10−8; minor allele frequency 21%). The rs12204590 stroke risk allele was also associated with increased MRI-defined burden of white matter hyperintensity—a marker of cerebral small vessel disease—in stroke-free adults (n=21 079; p=0·0025). Consistently, young patients (aged 2–32 years) with segmental deletions of FOXF2 showed an extensive burden of white matter hyperintensity. Deletion of Foxf2 in adult mice resulted in cerebral infarction, reactive gliosis, and microhaemorrhage. The orthologs of FOXF2 in zebrafish (foxf2b and foxf2a) are expressed in brain pericytes and mutant foxf2b−/− cerebral vessels show decreased smooth muscle cell and pericyte coverage. Interpretation We identified common variants near FOXF2 that are associated with increased stroke susceptibility. Epidemiological and experimental data suggest that FOXF2 mediates this association, potentially via differentiation defects of cerebral vascular mural cells. Further expression studies in appropriate human tissues, and further functional experiments with long follow-up periods are needed to fully understand the underlying mechanisms. Funding NIH, NINDS, NHMRC, CIHR, European national research institutions, Fondation Leducq. © 2016 Elsevier Ltd
  •  
4.
  • Feitosa, Mary F., et al. (författare)
  • Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries
  • 2018
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in approximate to 131 K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P <1.0 x 10(-5)). In Stage 2, these SNVs were tested for independent external replication in individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10(-8)). For African ancestry samples, we detected 18 potentially novel BP loci (P< 5.0 x 10(-8)) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2 have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
  •  
5.
  • Kraja, Aldi T., et al. (författare)
  • New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475000 Individuals
  • 2017
  • Ingår i: Circulation. - : LIPPINCOTT WILLIAMS & WILKINS. - 1942-325X .- 1942-3268. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background - Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association.Methods and Results - Here, we augment the sample with 140886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, approximate to 475000), and the other in the subset of individuals of European descent (approximate to 423000). Twenty-one SNVs were genome-wide significant (P<5x10(-8) ) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant.Conclusions - We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up.
  •  
6.
  • Coviello, Andrea D, et al. (författare)
  • A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.
  • 2012
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p=1.8×10(-106)), PRMT6 (rs17496332, 1p13.3, p=1.4×10(-11)), GCKR (rs780093, 2p23.3, p=2.2×10(-16)), ZBTB10 (rs440837, 8q21.13, p=3.4×10(-09)), JMJD1C (rs7910927, 10q21.3, p=6.1×10(-35)), SLCO1B1 (rs4149056, 12p12.1, p=1.9×10(-08)), NR2F2 (rs8023580, 15q26.2, p=8.3×10(-12)), ZNF652 (rs2411984, 17q21.32, p=3.5×10(-14)), TDGF3 (rs1573036, Xq22.3, p=4.1×10(-14)), LHCGR (rs10454142, 2p16.3, p=1.3×10(-07)), BAIAP2L1 (rs3779195, 7q21.3, p=2.7×10(-08)), and UGT2B15 (rs293428, 4q13.2, p=5.5×10(-06)). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p=2.5×10(-08), women p=0.66, heterogeneity p=0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.
  •  
7.
  •  
8.
  •  
9.
  • Traylor, Matthew, et al. (författare)
  • Genetic Variation at 16q24.2 is associated with small vessel stroke.
  • 2017
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 81:3, s. 383-394
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have been successful at identifying associations with stroke and stroke subtypes, but have not yet identified any associations solely with small vessel stroke (SVS). SVS comprises a quarter of all ischaemic stroke and is a major manifestation of cerebral small vessel disease, the primary cause of vascular cognitive impairment. Studies across neurological traits have shown younger onset cases have an increased genetic burden. We leveraged this increased genetic burden by performing an age-at-onset informed GWAS meta-analysis, including a large younger onset SVS population, to identify novel associations with stroke.We used a three-stage age-at-onset informed GWAS to identify novel genetic variants associated with stroke. On identifying a novel locus associated with SVS, we assessed its influence on other small vessel disease phenotypes, as well as on mRNA expression of nearby genes, and on DNA methylation of nearby CpG sites in whole blood and in the fetal brain.We identified an association with SVS in 4,203 cases and 50,728 controls on chromosome 16q24.2 (OR(95% CI)=1.16(1.10-1.22); p=3.2x10(-9) ). The lead SNP (rs12445022) was also associated with cerebral white matter hyperintensities (OR(95% CI)=1.10(1.05-1.16); p=5.3x10(-5) ; N=3,670), but not intracerebral haemorrhage (OR(95% CI)=0.97(0.84-1.12); p=0.71; 1,545 cases, 1,481 controls). rs12445022 is associated with mRNA expression of ZCCHC14 in arterial tissues (p=9.4x10(-7) ), and DNA methylation at probe cg16596957 in whole blood (p=5.3x10(-6) ).16q24.2 is associated with SVS. Associations of the locus with expression of ZCCHC14 and DNA methylation suggest the locus acts through changes to regulatory elements. This article is protected by copyright. All rights reserved.
  •  
10.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF = 1.4%) with lower FG (beta = -0.09 +/- 0.01 mmol l(-1), P = 3.4 x 10(-12)), T2D risk (OR[95% CI] = 0.86[0.76-0.96], P = 0.010), early insulin secretion (beta = -0.07 +/- 0.035 pmol(insulin) mmol(glucose)(-1), P = 0.048), but higher 2-h glucose (beta = 0.16 +/- 0.05 mmol l(-1), P = 4.3 x 10(-4)). We identify a gene-based association with FG at G6PC2 (p(SKAT) = 6.8 x 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF = 20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (beta = 0.02 +/- 0.004 mmol l(-1), P = 1.3 x 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 54
Typ av publikation
tidskriftsartikel (54)
Typ av innehåll
refereegranskat (54)
Författare/redaktör
Fornage, Myriam (54)
Rotter, Jerome I. (28)
Psaty, Bruce M (28)
Gudnason, Vilmundur (25)
Uitterlinden, André ... (24)
Boerwinkle, Eric (23)
visa fler...
Harris, Tamara B (22)
Launer, Lenore J (21)
Ikram, M. Arfan (19)
Deary, Ian J (19)
Liu, Yongmei (19)
Hofman, Albert (19)
Rich, Stephen S (19)
Hayward, Caroline (19)
Bis, Joshua C. (19)
van Duijn, Cornelia ... (18)
Loos, Ruth J F (18)
Lange, Leslie A. (18)
Wilson, James G. (17)
Smith, Albert V (17)
Chasman, Daniel I. (16)
Kooperberg, Charles (16)
Starr, John M (16)
Smith, Jennifer A (16)
Wareham, Nicholas J. (15)
Zhao, Wei (15)
Samani, Nilesh J. (15)
Kardia, Sharon L R (15)
Taylor, Kent D. (15)
Melander, Olle (14)
Rudan, Igor (14)
North, Kari E. (14)
Gieger, Christian (14)
Peters, Annette (14)
Morrison, Alanna C (14)
Elliott, Paul (14)
Reiner, Alex P. (14)
Seshadri, Sudha (14)
McCarthy, Mark I (13)
Ridker, Paul M. (13)
Langenberg, Claudia (13)
Boehnke, Michael (13)
Munroe, Patricia B. (13)
Polasek, Ozren (13)
Brody, Jennifer A. (13)
Chen, Yii-Der Ida (13)
Yanek, Lisa R. (13)
Lu, Yingchang (13)
Levy, Daniel (13)
Bottinger, Erwin P. (13)
visa färre...
Lärosäte
Lunds universitet (35)
Uppsala universitet (26)
Umeå universitet (14)
Göteborgs universitet (13)
Karolinska Institutet (12)
Mittuniversitetet (2)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (54)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy