SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Forouhi Nita G.) ;pers:(Grioni Sara)"

Sökning: WFRF:(Forouhi Nita G.) > Grioni Sara

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF = 1.4%) with lower FG (beta = -0.09 +/- 0.01 mmol l(-1), P = 3.4 x 10(-12)), T2D risk (OR[95% CI] = 0.86[0.76-0.96], P = 0.010), early insulin secretion (beta = -0.07 +/- 0.035 pmol(insulin) mmol(glucose)(-1), P = 0.048), but higher 2-h glucose (beta = 0.16 +/- 0.05 mmol l(-1), P = 4.3 x 10(-4)). We identify a gene-based association with FG at G6PC2 (p(SKAT) = 6.8 x 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF = 20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (beta = 0.02 +/- 0.004 mmol l(-1), P = 1.3 x 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
  •  
2.
  • Lunetta, Kathryn L., et al. (författare)
  • Rare coding variants and X-linked loci associated with age at menarche
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • More than 100 loci have been identified for age at menarche by genome-wide association studies; however, collectively these explain only similar to 3% of the trait variance. Here we test two overlooked sources of variation in 192,974 European ancestry women: low-frequency proteincoding variants and X-chromosome variants. Five missense/nonsense variants (in ALMS1/LAMB2/TNRC6A/TACR3/PRKAG1) are associated with age at menarche (minor allele frequencies 0.08-4.6%; effect sizes 0.08-1.25 years per allele; P<5 x 10(-8)). In addition, we identify common X-chromosome loci at IGSF1 (rs762080, P = 9.4 x 10(-13)) and FAAH2 (rs5914101, P = 4.9 x 10(-10)). Highlighted genes implicate cellular energy homeostasis, post-transcriptional gene silencing and fatty-acid amide signalling. A frequently reported mutation in TACR3 for idiopathic hypogonatrophic hypogonadism (p.W275X) is associated with 1.25-year-later menarche (P = 2.8 x 10(-11)), illustrating the utility of population studies to estimate the penetrance of reportedly pathogenic mutations. Collectively, these novel variants explain similar to 0.5% variance, indicating that these overlooked sources of variation do not substantially explain the 'missing heritability' of this complex trait.
  •  
3.
  • Scott, Robert A., et al. (författare)
  • A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease
  • 2016
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 8:341
  • Tidskriftsartikel (refereegranskat)abstract
    • Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to guide development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process.
  •  
4.
  • Wood, Angela M., et al. (författare)
  • Risk thresholds for alcohol consumption : combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 391:10129, s. 1513-1523
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Low-risk limits recommended for alcohol consumption vary substantially across different national guidelines. To define thresholds associated with lowest risk for all-cause mortality and cardiovascular disease, we studied individual-participant data from 599 912 current drinkers without previous cardiovascular disease.Methods: We did a combined analysis of individual-participant data from three large-scale data sources in 19 high-income countries (the Emerging Risk Factors Collaboration, EPIC-CVD, and the UK Biobank). We characterised dose-response associations and calculated hazard ratios (HRs) per 100 g per week of alcohol (12.5 units per week) across 83 prospective studies, adjusting at least for study or centre, age, sex, smoking, and diabetes. To be eligible for the analysis, participants had to have information recorded about their alcohol consumption amount and status (ie, non-drinker vs current drinker), plus age, sex, history of diabetes and smoking status, at least 1 year of follow-up after baseline, and no baseline history of cardiovascular disease. The main analyses focused on current drinkers, whose baseline alcohol consumption was categorised into eight predefined groups according to the amount in grams consumed per week. We assessed alcohol consumption in relation to all-cause mortality, total cardiovascular disease, and several cardiovascular disease subtypes. We corrected HRs for estimated long-term variability in alcohol consumption using 152 640 serial alcohol assessments obtained some years apart (median interval 5.6 years [5th-95th percentile 1.04-13.5]) from 71 011 participants from 37 studies.Findings: In the 599 912 current drinkers included in the analysis, we recorded 40 310 deaths and 39 018 incident cardiovascular disease events during 5.4 million person-years of follow-up. For all-cause mortality, we recorded a positive and curvilinear association with the level of alcohol consumption, with the minimum mortality risk around or below 100 g per week. Alcohol consumption was roughly linearly associated with a higher risk of stroke (HR per 100 g per week higher consumption 1.14, 95% CI, 1.10-1.17), coronary disease excluding myocardial infarction (1.06, 1.00-1.11), heart failure (1.09, 1.03-1.15), fatal hypertensive disease (1.24, 1.15-1.33); and fatal aortic aneurysm (1.15, 1.03-1.28). By contrast, increased alcohol consumption was loglinearly associated with a lower risk of myocardial infarction (HR 0.94, 0.91-0.97). In comparison to those who reported drinking >0-<= 100 g per week, those who reported drinking >100-<= 200 g per week, >200-<= 350 g per week, or >350 g per week had lower life expectancy at age 40 years of approximately 6 months, 1-2 years, or 4-5 years, respectively.Interpretation: In current drinkers of alcohol in high-income countries, the threshold for lowest risk of all-cause mortality was about 100 g/week. For cardiovascular disease subtypes other than myocardial infarction, there were no clear risk thresholds below which lower alcohol consumption stopped being associated with lower disease risk. These data support limits for alcohol consumption that are lower than those recommended in most current guidelines.
  •  
5.
  • Brand, Judith S., et al. (författare)
  • Age at Menopause, Reproductive Life Span, and Type 2 Diabetes Risk
  • 2013
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 36:4, s. 1012-1019
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Age at menopause is an important determinant of future health outcomes, but little is known about its relationship with type 2 diabetes. We examined the associations of menopausal age and reproductive life span (menopausal age minus menarcheal age) with diabetes risk.RESEARCH DESIGN AND METHODS-Data were obtained from the InterAct study, a prospective case-cohort study nested within the European Prospective Investigation into Cancer and Nutrition. A total of 3,691 postmenopausal type 2 diabetic case subjects and 4,408 subcohort members were included in the analysis, with a median follow-up of 11 years. Prentice weighted Cox proportional hazards models were adjusted for age, known risk factors for diabetes, and reproductive factors, and effect modification by BMI, waist circumference, and smoking was studied.RESULTS-Mean (SD) age of the subcohort was 59.2 (5.8) years. After multivariable adjustment, hazard ratios (HRs) of type 2 diabetes were 1.32 (95% CI 1.04-1.69), 1.09 (0.90-1.31), 0.97 (0.86-1.10), and 0.85 (0.70-1.03) for women with menopause at ages <40, 40-44, 45-49, and >= 55 years, respectively, relative to those with menopause at age 50-54 years. The HR per SD younger age at menopause was 1.08 (1.02-1.14). Similarly, a shorter reproductive life span was associated with a higher diabetes risk (HR per SD lower reproductive life span 1.06 [ 1.01-1.12]). No effect modification by BMI, waist circumference, or smoking was observed (P interaction all > 0.05).CONCLUSIONS-Early menopause is associated with a greater risk of type 2 diabetes. Diabetes Care 36:1012-1019, 2013
  •  
6.
  • Elks, Cathy E., et al. (författare)
  • Age at Menarche and Type 2 Diabetes Risk The EPIC-InterAct study
  • 2013
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 36:11, s. 3526-3534
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVEYounger age at menarche, a marker of pubertal timing in girls, is associated with higher risk of later type 2 diabetes. We aimed to confirm this association and to examine whether it is explained by adiposity.RESEARCH DESIGN AND METHODSThe prospective European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study consists of 12,403 incident type 2 diabetes cases and a stratified subcohort of 16,154 individuals from 26 research centers across eight European countries. We tested the association between age at menarche and incident type 2 diabetes using Prentice-weighted Cox regression in 15,168 women (n = 5,995 cases). Models were adjusted in a sequential manner for potential confounding and mediating factors, including adult BMI.RESULTSMean menarcheal age ranged from 12.6 to 13.6 years across InterAct countries. Each year later menarche was associated with 0.32 kg/m(2) lower adult BMI. Women in the earliest menarche quintile (8-11 years, n = 2,418) had 70% higher incidence of type 2 diabetes compared with those in the middle quintile (13 years, n = 3,634), adjusting for age at recruitment, research center, and a range of lifestyle and reproductive factors (hazard ratio [HR], 1.70; 95% CI, 1.49-1.94; P < 0.001). Adjustment for BMI partially attenuated this association (HR, 1.42; 95% CI, 1.18-1.71; P < 0.001). Later menarche beyond the median age was not protective against type 2 diabetes.CONCLUSIONSWomen with history of early menarche have higher risk of type 2 diabetes in adulthood. Less than half of this association appears to be mediated by higher adult BMI, suggesting that early pubertal development also may directly increase type 2 diabetes risk.
  •  
7.
  • Ibsen, Daniel B, et al. (författare)
  • Replacement of Red and Processed Meat With Other Food Sources of Protein and the Risk of Type 2 Diabetes in European Populations : The EPIC-InterAct Study
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 43:11, s. 2660-2667
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: There is sparse evidence for the association of suitable food substitutions for red and processed meat on the risk of type 2 diabetes. We modeled the association between replacing red and processed meat with other protein sources and the risk of type 2 diabetes and estimated its population impact.RESEARCH DESIGN AND METHODS: The European Prospective Investigation into Cancer (EPIC)-InterAct case cohort included 11,741 individuals with type 2 diabetes and a subcohort of 15,450 participants in eight countries. We modeled the replacement of self-reported red and processed meat with poultry, fish, eggs, legumes, cheese, cereals, yogurt, milk, and nuts. Country-specific hazard ratios (HRs) for incident type 2 diabetes were estimated by Prentice-weighted Cox regression and pooled using random-effects meta-analysis.RESULTS: There was a lower hazard for type 2 diabetes for the modeled replacement of red and processed meat `(50 g/day) with cheese (HR 0.90, 95% CI 0.83-0.97) (30 g/day), yogurt (0.90, 0.86-0.95) (70 g/day), nuts (0.90, 0.84-0.96) (10 g/day), or cereals (0.92, 0.88-0.96) (30 g/day) but not for replacements with poultry, fish, eggs, legumes, or milk. If a causal association is assumed, replacing red and processed meat with cheese, yogurt, or nuts could prevent 8.8%, 8.3%, or 7.5%, respectively, of new cases of type 2 diabetes.CONCLUSIONS: Replacement of red and processed meat with cheese, yogurt, nuts, or cereals was associated with a lower rate of type 2 diabetes. Substituting red and processed meat by other protein sources may contribute to the prevention of incident type 2 diabetes in European populations.
  •  
8.
  • Langenberg, Claudia, et al. (författare)
  • Long-Term Risk of Incident Type 2 Diabetes and Measures of Overall and Regional Obesity: The EPIC-InterAct Case-Cohort Study
  • 2012
  • Ingår i: PLoS Medicine. - San Francisco : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Waist circumference (WC) is a simple and reliable measure of fat distribution that may add to the prediction of type 2 diabetes (T2D), but previous studies have been too small to reliably quantify the relative and absolute risk of future diabetes by WC at different levels of body mass index (BMI). Methods and Findings: The prospective InterAct case-cohort study was conducted in 26 centres in eight European countries and consists of 12,403 incident T2D cases and a stratified subcohort of 16,154 individuals from a total cohort of 340,234 participants with 3.99 million person-years of follow-up. We used Prentice-weighted Cox regression and random effects meta-analysis methods to estimate hazard ratios for T2D. Kaplan-Meier estimates of the cumulative incidence of T2D were calculated. BMI and WC were each independently associated with T2D, with WC being a stronger risk factor in women than in men. Risk increased across groups defined by BMI and WC; compared to low normal weight individuals (BMI 18.5-22.4 kg/m(2)) with a low WC (< 94/80 cm in men/women), the hazard ratio of T2D was 22.0 (95% confidence interval 14.3; 33.8) in men and 31.8 (25.2; 40.2) in women with grade 2 obesity (BMI >= 35 kg/m(2)) and a high WC (> 102/88 cm). Among the large group of overweight individuals, WC measurement was highly informative and facilitated the identification of a subgroup of overweight people with high WC whose 10-y T2D cumulative incidence (men, 70 per 1,000 person-years; women, 44 per 1,000 person-years) was comparable to that of the obese group (50-103 per 1,000 person-years in men and 28-74 per 1,000 person-years in women). Conclusions: WC is independently and strongly associated with T2D, particularly in women, and should be more widely measured for risk stratification. If targeted measurement is necessary for reasons of resource scarcity, measuring WC in overweight individuals may be an effective strategy, since it identifies a high-risk subgroup of individuals who could benefit from individualised preventive action.
  •  
9.
  • Li, Sherly X., et al. (författare)
  • Interaction between genes and macronutrient intake on the risk of developing type 2 diabetes : systematic review and findings from European Prospective Investigation into Cancer (EPIC)-InterAct
  • 2017
  • Ingår i: American Journal of Clinical Nutrition. - : American society for nutrition. - 0002-9165 .- 1938-3207. ; 106:1, s. 263-275
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Gene-diet interactions have been reported to contribute to the development of type 2 diabetes (T2D). However, to our knowledge, few examples have been consistently replicated to date. Objective: We aimed to identify existing evidence for genemacronutrient interactions and T2D and to examine the reported interactions in a large-scale study. Design: We systematically reviewed studies reporting genemacronutrient interactions and T2D. We searched the MEDLINE, Human Genome Epidemiology Network, and WHO International Clinical Trials Registry Platform electronic databases to identify studies published up to October 2015. Eligibility criteria included assessment of macronutrient quantity (e.g., total carbohydrate) or indicators of quality (e. g., dietary fiber) by use of self-report or objective biomarkers of intake. Interactions identified in the review were subsequently examined in the EPIC (European Prospective Investigation into Cancer)-InterAct case-cohort study (n = 21,148, with 9403 T2D cases; 8 European countries). Prentice-weighted Cox regression was used to estimate countryspecific HRs, 95% CIs, and P-interaction values, which were then pooled by random-effects meta-analysis. A primary model was fitted by using the same covariates as reported in the published studies, and a second model adjusted for additional covariates and estimated the effects of isocaloric macronutrient substitution. Results: Thirteen observational studies met the eligibility criteria (n < 1700 cases). Eight unique interactions were reported to be significant between macronutrients [carbohydrate, fat, saturated fat, dietary fiber, and glycemic load derived from self-report of dietary intake and circulating n-3 (v-3) polyunsaturated fatty acids] and genetic variants in or near transcription factor 7-like 2 (TCF7L2), gastric inhibitory polypeptide receptor (GIPR), caveolin 2 (CAV2), and peptidase D (PEPD) (P-interaction, 0.05). We found no evidence of interaction when we tried to replicate previously reported interactions. In addition, no interactions were detected in models with additional covariates. Conclusions: Eight gene-macronutrient interactions were identified for the risk of T2D from the literature. These interactions were not replicated in the EPIC-InterAct study, which mirrored the analyses undertaken in the original reports. Our findings highlight the importance of independent replication of reported interactions.
  •  
10.
  • Li, Sherly X, et al. (författare)
  • Interplay between genetic predisposition, macronutrient intake and type 2 diabetes incidence: analysis within EPIC-InterAct across eight European countries.
  • 2018
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 61:6, s. 1325-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene-macronutrient interactions may contribute to the development of type 2 diabetes but research evidence to date is inconclusive. We aimed to increase our understanding of the aetiology of type 2 diabetes by investigating potential interactions between genes and macronutrient intake and their association with the incidence of type 2 diabetes.We investigated the influence of interactions between genetic risk scores (GRSs) for type 2 diabetes, insulin resistance and BMI and macronutrient intake on the development of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct, a prospective case-cohort study across eight European countries (N = 21,900 with 9742 incident type 2 diabetes cases). Macronutrient intake was estimated from diets reported in questionnaires, including proportion of energy derived from total carbohydrate, protein, fat, plant and animal protein, saturated, monounsaturated and polyunsaturated fat and dietary fibre. Using multivariable-adjusted Cox regression, we estimated country-specific interaction results on the multiplicative scale, using random-effects meta-analysis. Secondary analysis used isocaloric macronutrient substitution.No interactions were identified between any of the three GRSs and any macronutrient intake, with low-to-moderate heterogeneity between countries (I2 range 0-51.6%). Results were similar using isocaloric macronutrient substitution analyses and when weighted and unweighted GRSs and individual SNPs were examined.Genetic susceptibility to type 2 diabetes, insulin resistance and BMI did not modify the association between macronutrient intake and incident type 2 diabetes. This suggests that macronutrient intake recommendations to prevent type 2 diabetes do not need to account for differences in genetic predisposition to these three metabolic conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (22)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (23)
Författare/redaktör
Tumino, Rosario (23)
Riboli, Elio (22)
Overvad, Kim (21)
Boeing, Heiner (21)
Wareham, Nicholas J. (21)
visa fler...
Sharp, Stephen J. (20)
Sacerdote, Carlotta (19)
Langenberg, Claudia (19)
Key, Timothy J (18)
Rolandsson, Olov (18)
Tjonneland, Anne (18)
Panico, Salvatore (17)
van der Schouw, Yvon ... (17)
Kaaks, Rudolf (15)
Slimani, Nadia (15)
Fagherazzi, Guy (14)
Palli, Domenico (14)
van der A, Daphne L. (13)
Sánchez, Maria-José (12)
Khaw, Kay-Tee (12)
Schulze, Matthias B. (12)
Arriola, Larraitz (12)
Nilsson, Peter (11)
Quirós, J. Ramón (11)
Balkau, Beverley (11)
Barricarte, Aurelio (10)
Franks, Paul W. (10)
Scott, Robert A (10)
Masala, Giovanna (9)
Franks, Paul (9)
Ardanaz, Eva (9)
Nilsson, Peter M (8)
Amiano, Pilar (7)
Clavel-Chapelon, Fra ... (6)
Mattiello, Amalia (6)
Agudo, Antonio (6)
Navarro, Carmen (6)
McCarthy, Mark I (6)
Barroso, Ines (6)
González, Carlos (6)
Weiderpass, Elisabet ... (5)
Deloukas, Panos (5)
Katzke, Verena (5)
Kühn, Tilman (5)
Ramon Quiros, J. (5)
Crowe, Francesca L (5)
Kuehn, Tilman (5)
Luan, Jian'an (5)
Feskens, Edith J. M. (5)
visa färre...
Lärosäte
Lunds universitet (23)
Umeå universitet (22)
Uppsala universitet (4)
Karolinska Institutet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy