SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Forssell Johan) ;pers:(Langen Britta)"

Search: WFRF:(Forssell Johan) > Langen Britta

  • Result 1-10 of 63
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson, Charlotte, et al. (author)
  • Biodistribution of I-131 in mice is influenced by circadian variations
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Effects of radiation and biodistribution of radionuclides are often studied in animal models. Circadian rhythm affects many biological functions and may influence the biokinetics of radionuclides and observed responses. The aim of this study was to investigate if the time during the day of I-131 injection affects the biodistribution and absorbed dose to tissues in mice. Biodistribution studies were conducted on male C57BL/6 N mice for three diurnal time-series: the animals were i.v. injected with 160 kBq I-131 at 8 am, 12 pm or 4 pm. The activity concentration in organs and tissues was measured at 1 h to 7 days after administration and absorbed dose at day 7 was determined. Comparison between the three time-series showed statistically significant differences in activity concentration in all investigated tissues and organs. Administration performed at 12 pm resulted in general in higher absorbed dose to the organs than injection performed at 8 am and 4 pm. Time of day of administration affects the biodistribution of I-131 in mice and consequently the absorbed dose to individual organs. These findings advocate that subsequent biodistribution studies and dosimetry calculations should consider time-point of administration as a variable that could influence the results.
  •  
2.
  •  
3.
  •  
4.
  • Andersson, Charlotte, et al. (author)
  • Diurnal variations in biodistribution of the radionuclide I-131 in mice
  • 2016
  • In: Swedish Cancer Research Meeting, Gothenburg, 2016, November 7-8.
  • Conference paper (other academic/artistic)abstract
    • Background: Radionuclides are routinely used to diagnose and treat many different types of cancer. I-131 is a well-established radioisotope used in e.g. treatment of thyroid cancer and neuroblastoma. Accurate knowledge of I-131 biodistribution is essential to correctly estimate the absorbed dose to normal organs and determine potential risks from I-131 exposure, which is especially important when treating children. Many biological functions in living organisms follow a circadian rhythm. Nevertheless, little is known about diurnal variations in radionuclide biodistribution. This study investigates if circadian rhythm affects I-131 biodistribution in mice and absorbed dose to organs and tissues. Materials & Methods: The radioactivity concentration in mice tissues was studied at different time-points after administration of I-131, and absorbed doses were calculated. The effect of circadian rhythm was studied by varying the time of administration. Results: Difference in activity concentration between the administration time-points was observed at many time-points after administration for most investigated tissues. For some organs differences were also observed in the absorbed dose. The highest activity concentration and absorbed dose were found in the thyroid regardless of time of administration. Conclusion: The results demonstrate that the biodistribution of I-131 in mice is influenced by the time of day of administration. These findings advocate that circadian rhythm should be considered in biodistribution studies and suggests that time-point of administration of radiopharmaceuticals containing I-131 for therapy can be further optimized. An optimized time-point could result in higher absorbed dose to the tumor and/or lower absorbed dose to normal tissues.
  •  
5.
  • Andersson, Charlotte, et al. (author)
  • The influence of circadian rhythm on the biodistribution of I-131
  • 2016
  • In: Swedish Radiation Research Association for Young Scientists Workshop, Stockholm, 2016, August 25-26.
  • Conference paper (other academic/artistic)abstract
    • Background: I-131 is well-established in nuclear medicine. The thyroid is a target organ when treating thyroid cancer with unbound I-131, but also a risk organ in I-131-based radionuclide therapy. Exposure to I-131 can also occur from the environment at nuclear accidents. Accurate knowledge of I-131 biodistribution is essential to correctly estimate the absorbed dose to organs and determine potential risks from both medical and hazard exposure. Many biological functions follow a circadian rhythm. Nevertheless, circadian rhythm remains an unknown factor in radionuclide biodistribution. Aim: The purpose of this study was to investigate if circadian rhythm affects I-131 biodistribution in mice and hence absorbed dose to mouse tissues. Methods: The radioactivity concentration in various tissues was studied at different time points after administration of I-131 and absorbed doses were calculated according to the MIRD formalism. The effect of circadian rhythm was studied by varying the time of administration. Male C57BL/6N mice were i.v. injected with I-131 at 8 am, 12 pm or 4 pm and killed after 1h to 7d. Results: Statistically significant difference in activity concentration and absorbed dose between the three injection series was observed for at least one time point after injection for many tissues. Highest activity concentration and absorbed dose were found in the thyroid. Conclusion: The results demonstrated that the biodistribution of I-131 in mice is influenced by the time of day of administration to a certain extent. These findings advocate that circadian rhythm should be considered in biodistribution studies and dose calculations.
  •  
6.
  •  
7.
  •  
8.
  • Dalmo, Johanna, et al. (author)
  • Priming increases the anti-tumor effect and therapeutic window of 177Lu-octreotate in nude mice bearing human small intestine neuroendocrine tumor GOT1.
  • 2017
  • In: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 7:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: 177Lu-[DOTA0, Tyr3]-octreotate (177Lu-octreotate) is used for treatment of patients with somatostatin receptor (SSTR) expressing neuroendocrine tumors. However, complete tumor remission is rarely seen, and optimization of treatment protocols is needed. In vitro studies have shown that irradiation can up-regulate the expression of SSTR1, 2 and 5, and increase 177Lu-octreotate uptake. The aim of the present study was to examine the anti-tumor effect of a 177Lu-octreotate priming dose followed 24 h later by a second injection of 177Lu-octreotate compared to a single administration of 177Lu-octreotate, performed on the human small intestine neuroendocrine tumor cell line, GOT1, transplanted to nude mice. RESULTS: Priming resulted in a 1.9 times higher mean absorbed dose to the tumor tissue per administered activity, together with a reduced mean absorbed dose for kidneys. Priming gave the best overall anti-tumor effects. Magnetic resonance imaging showed no statistically significant difference in tumor response between treatment with and without priming. Gene expression analysis demonstrated effects on cell cycle regulation. Biological processes associated with apoptotic cell death were highly affected in the biodistribution and dosimetry study, via differential regulation of, e.g., APOE, BAX, CDKN1A, and GADD45A. CONCLUSIONS: Priming had the best overall anti-tumor effects and also resulted in an increased therapeutic window. Results indicate that potential biomarkers for tumor regrowth may be found in the p53 or JNK signaling pathways. Priming administration is an interesting optimization strategy for 177Lu-octreotate therapy of neuroendocrine tumors, and further studies should be performed to determine the mechanisms responsible for the reported effects.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 63

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view