SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frånberg Mattias) "

Sökning: WFRF:(Frånberg Mattias)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruzelius, Maria, et al. (författare)
  • PDGFB, a new candidate plasma biomarker for venous thromboembolism : results from the VEREMA affinity proteomics study
  • 2016
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 128:23, s. E59-E66
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a clear clinical need for high-specificity plasma biomarkers for predicting risk of venous thromboembolism (VTE), but thus far, such markers have remained elusive. Utilizing affinity reagents from the Human Protein Atlas project and multiplexed immuoassays, we extensively analyzed plasma samples from 2 individual studies to identify candidate protein markers associated with VTE risk. We screened plasma samples from 88 VTE cases and 85 matched controls, collected as part of the Swedish Venous Thromboembolism Biomarker Study, using suspension bead arrays composed of 755 antibodies targeting 408 candidate proteins. We identified significant associations between VTE occurrence and plasma levels of human immunodeficiency virus type I enhancer binding protein 1 (HIVEP1), von Willebrand factor (VWF), glutathione peroxidase 3 (GPX3), and platelet-derived growth factor beta (PDGFB). For replication, we profiled plasma samples of 580 cases and 589 controls from the French FARIVE study. These results confirmed the association of VWF and PDGFB with VTE after correction for multiple testing, whereas only weak trends were observed for HIVEP1 and GPX3. Although plasma levels of VWF and PDGFB correlated modestly (rho similar to 0.30) with each other, they were independently associated with VTE risk in a joint model in FARIVE (VWF P < .001; PDGFB P = .002). PDGF. was verified as the target of the capture antibody by immunocapture mass spectrometry and sandwich enzyme-linked immunosorbent assay. In conclusion, we demonstrate that high-throughput affinity plasma proteomic profiling is a valuable research strategy to identify potential candidate biomarkers for thrombosis-related disorders, and our study suggests a novel association of PDGFB plasma levels with VTE.
  •  
2.
  • de Vries, Paul S., et al. (författare)
  • Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5x10(-8) is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5x10(-8)), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development.
  •  
3.
  • Evangelou, Evangelos, et al. (författare)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
4.
  • Folkersen, Lasse, et al. (författare)
  • Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease
  • 2017
  • Ingår i: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in highly multiplexed immunoassays have allowed systematic large-scale measurement of hundreds of plasma proteins in large cohort studies. In combination with genotyping, such studies offer the prospect to 1) identify mechanisms involved with regulation of protein expression in plasma, and 2) determine whether the plasma proteins are likely to be causally implicated in disease. We report here the results of genome-wide association (GWA) studies of 83 proteins considered relevant to cardiovascular disease (CVD), measured in 3,394 individuals with multiple CVD risk factors. We identified 79 genome-wide significant (p<5e-8) association signals, 55 of which replicated at P<0.0007 in separate validation studies (n = 2,639 individuals). Using automated text mining, manual curation, and network-based methods incorporating information on expression quantitative trait loci (eQTL), we propose plausible causal mechanisms for 25 trans-acting loci, including a potential post-translational regulation of stem cell factor by matrix metalloproteinase 9 and receptor-ligand pairs such as RANK-RANK ligand. Using public GWA study data, we further evaluate all 79 loci for their causal effect on coronary artery disease, and highlight several potentially causal associations. Overall, a majority of the plasma proteins studied showed evidence of regulation at the genetic level. Our results enable future studies of the causal architecture of human disease, which in turn should aid discovery of new drug targets.
  •  
5.
  •  
6.
  •  
7.
  • Frånberg, Mattias, 1985-, et al. (författare)
  • Discovering Genetic Interactions in Large-Scale Association Studies by Stage-wise Likelihood Ratio Tests
  • 2015
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the success of genome-wide association studies in medical genetics, the underlying genetics of many complex diseases remains enigmatic. One plausible reason for this could be the failure to account for the presence of genetic interactions in current analyses. Exhaustive investigations of interactions are typically infeasible because the vast number of possible interactions impose hard statistical and computational challenges. There is, therefore, a need for computationally efficient methods that build on models appropriately capturing interaction. We introduce a new methodology where we augment the interaction hypothesis with a set of simpler hypotheses that are tested, in order of their complexity, against a saturated alternative hypothesis representing interaction. This sequential testing provides an efficient way to reduce the number of non-interacting variant pairs before the final interaction test. We devise two different methods, one that relies on a priori estimated numbers of marginally associated variants to correct for multiple tests, and a second that does this adaptively. We show that our methodology in general has an improved statistical power in comparison to seven other methods, and, using the idea of closed testing, that it controls the family-wise error rate. We apply our methodology to genetic data from the PRO-CARDIS coronary artery disease case/control cohort and discover three distinct interactions. While analyses on simulated data suggest that the statistical power may suffice for an exhaustive search of all variant pairs in ideal cases, we explore strategies for a priori selecting subsets of variant pairs to test. Our new methodology facilitates identification of new disease-relevant interactions from existing and future genome-wide association data, which may involve genes with previously unknown association to the disease. Moreover, it enables construction of interaction networks that provide a systems biology view of complex diseases, serving as a basis for more comprehensive understanding of disease pathophysiology and its clinical consequences.
  •  
8.
  • Frånberg, Mattias, 1985-, et al. (författare)
  • Fast and general tests of genetic interaction for genome-wide association studies
  • 2017
  • Ingår i: PloS Computational Biology. - : PUBLIC LIBRARY SCIENCE. - 1553-734X .- 1553-7358. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • A complex disease has, by definition, multiple genetic causes. In theory, these causes could be identified individually, but their identification will likely benefit from informed use of anticipated interactions between causes. In addition, characterizing and understanding interactions must be considered key to revealing the etiology of any complex disease. Large-scale collaborative efforts are now paving the way for comprehensive studies of interaction. As a consequence, there is a need for methods with a computational efficiency sufficient for modern data sets as well as for improvements of statistical accuracy and power. Another issue is that, currently, the relation between different methods for interaction inference is in many cases not transparent, complicating the comparison and interpretation of results between different interaction studies. In this paper we present computationally efficient tests of interaction for the complete family of generalized linear models (GLMs). The tests can be applied for inference of single or multiple interaction parameters, but we show, by simulation, that jointly testing the full set of interaction parameters yields superior power and control of false positive rate. Based on these tests we also describe how to combine results from multiple independent studies of interaction in a meta-analysis. We investigate the impact of several assumptions commonly made when modeling interactions. We also show that, across the important class of models with a full set of interaction parameters, jointly testing the interaction parameters yields identical results. Further, we apply our method to genetic data for cardiovascular disease. This allowed us to identify a putative interaction involved in Lp(a) plasma levels between two 'tag' variants in the LPA locus (p = 2.42 . 10(-09)) as well as replicate the interaction (p = 6.97 . 10(-07)). Finally, our meta-analysis method is used in a small (N = 16,181) study of interactions in myocardial infarction.
  •  
9.
  • Frånberg, Mattias, 1985- (författare)
  • Statistical methods for detecting gene-gene and gene-environment interactions in genome-wide association studies
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Despite considerable effort to elucidate the genetic architecture of multi-factorial traits and diseases, there remains a gap between the estimated heritability (e.g., from twin studies) and the heritability explained by discovered genetic variants. The existence of interactions between different genes, and between genes and the environment, has frequently been hypothesized as a likely cause of this discrepancy. However, the statistical inference of interactions is plagued by limited sample sizes, high computational requirements, and incomplete knowledge of how the measurement scale and parameterization affect the analysis.This thesis addresses the major statistical, computational, and modeling issues that hamper large-scale interaction studies today. Furthermore, it investigates whether gene-gene and gene-environment interactions are significantly involved in the development of diseases linked to atherosclerosis. Firstly, I develop two statistical methods that can be used to study of gene-gene interactions: the first is tailored for limited sample size situations, and the second enables multiple analyses to be combined into large meta-analyses. I perform comprehensive simulation studies to determine that these methods have higher or equal statistical power than contemporary methods, scale-invariance is required to guard against false positives, and that saturated parameterizations perform well in terms of statistical power. In two studies, I apply the two proposed methods to case/control data from myocardial infarction and associated phenotypes. In both studies, we identify putative interactions for myocardial infarction but are unable to replicate the interactions in a separate cohort. In the second study, however, we identify and replicate a putative interaction involved in Lp(a) plasma levels between two variants rs3103353 and rs9458157. Secondly, I develop a multivariate statistical method that simultaneously estimates the effects of genetic variants, environmental variables, and their interactions. I show by extensive simulations that this method achieves statistical power close to the optimal oracle method. We use this method to study the involvement of gene-environment interactions in intima-media thickness, a phenotype relevant for coronary artery disease. We identify a putative interaction between a genetic variant in the KCTD8 gene and alcohol use, thus suggesting an influence on intima-media thickness. The methods developed to support the analyses in this thesis as well as a selection of other prominent methods in the field is implemented in a software package called besiq.In conclusion, this thesis presents statistical methods, and the associated software, that allows large-scale studies of gene-gene and gene-environment interactions to be effortlessly undertaken.
  •  
10.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (12)
annan publikation (3)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Hamsten, Anders (11)
Lind, Lars (7)
Sennblad, Bengt (7)
Wareham, Nicholas J. (5)
Langenberg, Claudia (5)
Boehnke, Michael (5)
visa fler...
Scott, Robert A (5)
Salomaa, Veikko (4)
Lagergren, Jens (4)
Johansson, Åsa (4)
Hansen, Torben (4)
Ridker, Paul M. (4)
Chasman, Daniel I. (4)
van Duijn, Cornelia ... (4)
Ripatti, Samuli (4)
Tuomilehto, Jaakko (4)
Rotter, Jerome I. (4)
Gieger, Christian (4)
de Faire, Ulf (4)
Mahajan, Anubha (4)
Luan, Jian'an (4)
Gustafsson, Stefan (4)
Metspalu, Andres (4)
Boeing, Heiner (3)
Rudan, Igor (3)
Strachan, David P (3)
Palli, Domenico (3)
Almgren, Peter (3)
Laakso, Markku (3)
McCarthy, Mark I (3)
Linneberg, Allan (3)
Grarup, Niels (3)
Pedersen, Oluf (3)
Amin, Najaf (3)
Rose, Lynda M (3)
Mohlke, Karen L (3)
Ingelsson, Erik (3)
Enroth, Stefan, 1976 ... (3)
Mangino, Massimo (3)
Oostra, Ben A. (3)
Peters, Annette (3)
Boomsma, Dorret I. (3)
Spector, Tim D. (3)
Barroso, Ines (3)
Hattersley, Andrew T (3)
Gyllensten, Ulf (3)
Palmer, Colin N. A. (3)
Padmanabhan, Sandosh (3)
Deary, Ian J (3)
Kathiresan, Sekar (3)
visa färre...
Lärosäte
Karolinska Institutet (12)
Stockholms universitet (11)
Uppsala universitet (8)
Kungliga Tekniska Högskolan (7)
Lunds universitet (5)
Umeå universitet (3)
visa fler...
Göteborgs universitet (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Medicin och hälsovetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy