SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Franks Paul)
 

Sökning: WFRF:(Franks Paul) > Övrigt vetenskapligt/konstnärligt > Sun Na > Metabolic resilienc...

Metabolic resilience is encoded in genome plasticity

Agudelo, Leandro Z. (författare)
Massachusetts Institute of Technology
Tuyeres, Remy (författare)
Massachusetts Institute of Technology
Llinares, Claudia (författare)
Miguel Hernández University of Elche
visa fler...
Morcuende, Alvaro (författare)
Miguel Hernández University of Elche
Park, Yongjin (författare)
Massachusetts Institute of Technology
Sun, Na (författare)
Massachusetts Institute of Technology
Linna-Kuosmanen, Suvi (författare)
Massachusetts Institute of Technology
Atabaki-Pasdar, Naeimeh (författare)
Lund University,Lunds universitet,Genetisk och molekylär epidemiologi,Forskargrupper vid Lunds universitet,Genetic and Molecular Epidemiology,Lund University Research Groups,Massachusetts Institute of Technology
Ho, Li-Lun (författare)
Massachusetts Institute of Technology
Galani, Kyriakitsa (författare)
Massachusetts Institute of Technology
Franks, Paul W. (författare)
Lund University,Lunds universitet,Genetisk och molekylär epidemiologi,Forskargrupper vid Lunds universitet,Genetic and Molecular Epidemiology,Lund University Research Groups,Harvard T.H. Chan School of Public Health
Kutlu, Burak (författare)
Novo Nordisk, Inc., US
Grove, Kevin (författare)
Novo Nordisk, Inc., US
Femenia, Teresa (författare)
Karolinska Institutet,Miguel Hernández University of Elche
Kellis, Manolis (författare)
Massachusetts Institute of Technology
visa färre...
 (creator_code:org_t)
2021
Engelska 26 s.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Metabolism plays a central role in evolution, as resource conservation is a selective pressure for fitness and survival.Resource-driven adaptations offer a good model to study evolutionary innovation more broadly. It remains unknown howresource-driven optimization of genome function integrates chromatin architecture with transcriptional phase transitions.Here we show that tuning of genome architecture and heterotypic transcriptional condensates mediate resilience tonutrient limitation. Network genomic integration of phenotypic, structural, and functional relationships reveals that fattissue promotes organismal adaptations through metabolic acceleration chromatin domains and heterotypic PGC1Acondensates. We find evolutionary adaptations in several dimensions; low conservation of amino acid residues withinprotein disorder regions, nonrandom chromatin location of metabolic acceleration domains, condensate-chromatin stabilitythrough cis-regulatory anchoring and encoding of genome plasticity in radial chromatin organization. We show thatenvironmental tuning of these adaptations leads to fasting endurance, through efficient nuclear compartmentalization oflipid metabolic regions, and, locally, human-specific burst kinetics of lipid cycling genes. This process reduces oxidativestress, and fatty-acid mediated cellular acidification, enabling endurance of condensate chromatin conformations.Comparative genomics of genetic and diet perturbations reveal mammalian convergence of phenotype and structuralrelationships, along with loss of transcriptional control by diet-induced obesity. Further, we find that radial transcriptionalorganization is encoded in functional divergence of metabolic disease variant-hubs, heterotypic condensate composition,and protein residues sensing metabolic variation. During fuel restriction, these features license the formation of largeheterotypic condensates that buffer proton excess, and shift viscoelasticity for condensate endurance. This mechanismmaintains physiological pH, reduces pH-resilient inflammatory gene programs, and enables genome plasticity throughtranscriptionally driven cell-specific chromatin contacts. In vivo manipulation of this circuit promotes fasting-likeadaptations with heterotypic nuclear compartments, metabolic and cell-specific homeostasis. In sum, we uncover here ageneral principle by which transcription uses environmental fluctuations for genome function, and demonstrate howresource conservation optimizes transcriptional self-organization through robust feedback integrators, highlighting obesityas an inhibitor of genome plasticity relevant for many diseases.

Ämnesord

NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)

Publikations- och innehållstyp

ovr (ämneskategori)
vet (ämneskategori)

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy