SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fransson Torsten) ;pers:(Jayasuriya Jeevan)"

Sökning: WFRF:(Fransson Torsten) > Jayasuriya Jeevan

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abeywecra, Ruchira, et al. (författare)
  • A Remote Mode High Quality International Master Degree Program in Environomical Pathways for Sustainable Energy Systems (SELECT) -Pilot Program Experiences During First Year of Studies
  • 2018
  • Ingår i: PROCEEDINGS OF 2018 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON) - EMERGING TRENDS AND CHALLENGES OF ENGINEERING EDUCATION. - : IEEE. - 9781538629574 ; , s. 276-284
  • Konferensbidrag (refereegranskat)abstract
    • Remote mode study programs at master degree level are becoming more popular than undergraduate level programs. Students after graduation with Bachelors degree very often are employed and the most appropriate mode for them to pursue higher studies is the remote mode. Postgraduate programs with one or two year duration mostly focus on specific areas of research based industrial application. Traditional remote education is thought to be more centered on web based on-line programs with a little opportunity for teacher student interaction and interaction with peers. In such programs motivation for studies has been a problem and as a result many students drop off and also those remain in the program for prolonged periods do not show good performance. One of the reasons for failures of students in remote studies is the isolation leading to discouragement for the completion studies. A remote mode Master Degree Program in Environomical Pathways for Sustainable Energy Systems (MSc-SELECT), consisting of a number of innovative features aimed at improved student engagement, motivation, exposure to experiences in multi-national setting and team work, was developed and implemented by the Master School of the EIT-InnoEnergy, as a pilot project. The program was offered, collaboratively and simultaneously to students in three locations, Royal Institute of Technology in Sweden, Universitat Politecnica de Catalunya in Spain and the Open University of Sri Lanka. The students in Sweden and Spain each followed 50% of the courses on-campus and 50% in remote mode depending upon the university they registered with. The students in Sri Lanka followed the entire 1st year fully remotely. All the students (from KTH, OUSL and UPC) will spend the 2nd year on-campus at another university in the consortium. This paper discusses, from the perspective of the fully remote site, the remote program with its innovative aspects, student performance and experience together with future tasks for making the program viable and beneficial to all partner countries.
  •  
2.
  • Abeyweera, Ruchira, et al. (författare)
  • Capacity Building Through a Web Based Master Degree Programme in Sustainable Energy Engineering
  • 2017
  • Ingår i: PROCEEDINGS OF 2017 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON2017). - : IEEE. - 9781509054671 ; , s. 800-805
  • Konferensbidrag (refereegranskat)abstract
    • Open Distance Learning is gaining popularity as a successful alternative for on-campus higher education especially with the emergence of web based platforms which enable the online delivery of courses worldwide. This emerging educational pedagogy can successfully be employed as means of capacity building of the people living in the less fortunate parts of the world where higher education especially at master level are scarce. This paper presents a two-year collaborative master study programme in sustainable energy engineering offered in synchronous with an on-campus study programme conducted by the KTH Royal Institute of Technology of Sweden, to students of Sri Lanka, which was facilitated by the Open University of Sri Lanka. The paper describes the need of such a programme, the format of course delivery and assessment thereof, plus the benefits gained. This programme has produced 72 post graduates in Sri Lanka alone and more than 200 distant postgraduates worldwide in the field of sustainable energy engineering during last 10 years period. In terms of capacity building in the energy sector in Sri Lanka this is considered a great achievement. The experience gained by the local staff in the role of local facilitators who engaged in some of the academic related activities such as evaluation of students' presentation and co-supervision of thesis projects have been greatly appreciated as being additional benefits to the staff in terms of their own academic development and capacity building. Finally, conclusions are made on how remote programmes of study could successfully be delivered to places where such know-how is scarce by adapting appropriate technologies in training personnel at postgraduate level to meet the needs of the industry.
  •  
3.
  • Arturo Manrique, Carrera, et al. (författare)
  • Catalytic Partial Oxidation of Natural Gas in Gas Turbine Applications
  • 2013
  • Ingår i: Proceedings of ASME Turbo Expo 2013. - 9780791855119
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The demands of emissions, combustion efficiency over a wider operational range, and fuel flexibility for industrial gas turbine applications are expected to increase in the coming years. Currently, it is common the use of a stabilizing piloting diffusion flame during part load operation, this flame is accountable for an important part of the thermal NOx emissions on partial load, and in some cases also at full load operation. On the other hand Catalytic Partial Oxidation (CPO) of natural gas is a technique used in petrochemical industry for the Fischer-Tropsch process and for H2 production, and is based in the production of Syn-Gas rich in H2 and CO.The present work explores the possibility to use the CPO of natural gas in industrial gas turbine applications, it is based in experiments performed between 5 and 13 bar using an arrangement of Rh based catalyst and CH4. The experiments were done at the Catalytic Combustion High Pressure Test Facility, at the Royal Institute of Technology (KTH) in Sweden. The gas produced leaves the CPO reactor between 700 and 850 °C and it is rich in H2 and CO. It was found that the most important parameter after reaching the light off temperature in the CPO reactor is the equivalence ratio Φ, which evidences the kinetically controlled regime in the Rh catalyst that depends on O2 availability. The H2/CO ratio is close to the theoretical value of 2 and the selectivity towards H2 and CO are 90% and 95% respectively while the CH4 conversion reached approximately 55%.Pressure on the other hand had a small negative influence in the tested pressure range and it is more relevant at richer fuel conditions (high equivalence ratios). The CPO process had shown that it is relatively easy to control the operation temperature of the catalyst. This temperature is kept below the maximum allowed by reducing the O2 availability.The high temperature Syn-Gas gas produced through CPO process could be burnt in the downstream of the catalysts steadily at flame temperatures below the thermal-NOx threshold. The CPO reactor could provide the flame stabilization function at a wide range of operational conditions, and replace the diffusion piloting flame. This approach could cope with NOx and CO emissions in a wider operational range and offers the possibility of using different fuels as the reaction controlling factor is O2 availability. Furthermore, an initial design of a possible combustion strategy downstream of the CPO reactor is also presented.
  •  
4.
  • Arturo Manrique, Carrera, et al. (författare)
  • Staged Lean Catalytic Combustion of Gasified Biomass for Gas Turbine Applications : an Experimental Approach to Investigate Performance of Catalysts
  • 2013
  • Ingår i: Proceedings of ASME Turbo Expo 2013. - 9780791855133
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Emission demands for gas turbine utilization will become more stringent in the coming years. Currently different techniques are used to reach low levels of NOx emissions. One possible solution is the Staged Lean Catalytic Combustion. In this concept a catalysts arrangement is used to generate high temperature combustion gases. The high temperature gases could be used to feed a second combustion stage in which more fuel is injected.In this work a series of experiments were performed at the Catalytic Combustion High Pressure Test Facility at the Royal Institute of Technology (KTH) in Sweden. The fuel used was a simulated gasified biomass and the catalytic combustor consisted of an arrangement of different catalysts, e.g. bimetallic, hexaaluminates, and perovskites catalysts. These were used as, ignition catalyst, medium temperature catalyst and high temperature catalyst respectively.The tests were performed between 5 and 13.5 bar, and the overall conversion varied between 60% and 70% and the temperature of flue gases could reach 750°C and contains high level of oxygen. The determining factor to control the exit gas temperature was the richness of the mixture (λ value). On the other hand, the increased pressure had a moderate negative effect in the overall fuel conversion. This effect is stronger at leaner mixtures compared to richer ones. Moreover, λ value and also pressure affected the temperature distribution along the reactor.The utilization of a lean catalytic combustion approach makes possible the use of a post catalytic combustion. In this region additional fuel is injected to fully burn the exiting gases and increase the exit temperature to the desired levels. This staged lean catalytic combustion approach could resemble moderate levels exhaust gas recirculation techniques and/or high air temperature combustion and it is also briefly examined in the present work.
  •  
5.
  • Dayananda, Chathuri, et al. (författare)
  • Constructive learning methodology for distant based online education in renewable energy technologies
  • 2017
  • Ingår i: PROCEEDINGS OF 2017 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON2017). - : IEEE. - 9781509054671 ; , s. 1033-1041
  • Konferensbidrag (refereegranskat)abstract
    • With the rising concerns about global warming, climate change and the rapid development in the renewable energy industry, many higher educational institutes such as engineering and technological schools around the world have started to offer various educational programs related to sustainable energy pedagogical topics. The knowledge of renewable energy will be a crucial part of scientific literacy for the future; hence it is an absolute necessity to develop easily accessible and flexible-learning approaches in order to succeed in this. Due to various factors, today, the digital online education concept is becoming very popular, both as blended on-campus and as stand-alone studies. Moreover, the traditional teacher driven education system is being also challenged and new student oriented teaching approaches are currently being identified and practiced by various educational experts. This paper discusses a case study developed by applying the learner-centered teaching concept and implemented as part of an online learning course offered for one month (14 hours of learning time was recommended per week) focusing on renewable energy technology innovations for five student groups in three countries. The methodology section of this paper discuss the application of aligned teaching methodology for designing and constructing the course, content deployment of an existing learning management tool and the implementation and course evaluation. Finally, the assessments were graded and results were analyzed to identify success of the new educational concept applied A survey questionnaire was also prepared to receive the thoughts about online learning courses and their experience with the online course performed From an overall point of view, the evaluation and the results exemplify the success and the acceptance of the offered online course by the participants providing good average grading and positive opinions of the method of implementation. Participants also expressed their greater enthusiasm and interest of participating in such online courses for renewable energy engineering, as many of the topics offered through the course are lacking in their existing or past study curriculums.
  •  
6.
  •  
7.
  •  
8.
  • Jayasuriya, Jeevan, et al. (författare)
  • Experimental investigations of catalytic combustion for high-pressure gas turbine applications
  • 2006
  • Ingår i: Proceedings of the ASME Turbo Expo 2006, Vol 1. - 0791842363 ; , s. 763-771
  • Konferensbidrag (refereegranskat)abstract
    • Catalytic combustion has proven to be a suitable alternative to conventional flame combustion in gas turbines for achieving Ultra-Low Emission levels (ULE). In the process of catalytic combustion, it is possible to achieve a stable combustion of lean fuel/air mixtures which results in reduced combustion temperature in the combustor. The ultimate result is that almost no thermal-NOx is formed and the emissions of carbon monoxide and hydrocarbon emissions are reduced to single-digit limits. Successful development of catalytic combustion technology would lead to reducing pollutant emissions in gas turbines to ultra-low levels at lower operating costs. Since the catalytic combustion prevents the pollutant formations in the combustion there is no need for costly emission cleaning systems.
  •  
9.
  • Jayasuriya, Jeevan, 1967- (författare)
  • Experimental Investigations of High Pressure Catalytic Combustion for Gas Turbine Applications
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This work is devoted to generate knowledge and high quality experimental data of catalytic combustion at operational gas turbine conditions.The initial task of the thesis work was to design and construct a high pressure combustion test facility, where the catalytic combustion experiments can be performed at real gas turbine conditions. With this in mind, a highly advanced combustion test facility has been designed, constructed and tested. This test facility is capable of simulating combustion conditions relevant to a wide range of operating gas turbine conditions and different kinds of fuel gases. The shape of the combustor (test section) is similar to a “can” type gas turbine combustor, but with significant differences in its type of operation. The test combustor is expected to operate at near adiabatic combustion conditions and there will be no additions of cooling, dilution or secondary supply of air into the combustion process. The geometry of the combustor consists of three main zones such as air/fuel mixing zone, catalytic reaction zone and downstream gas phase reaction zone with no difference of the mass flow at inlet and exit. The maximum capacity of the test facility is 100 kW (fuel power) and the maximum air flow rate is 100g/s.The significant features of the test facility are counted as its operational pressure range (1 – 35 atm), air inlet temperatures (100 – 650 °C), fuel flexibility (LHV 4 - 40 MJ/m3) and air humidity (0 – 30% kg/kg of air). Given these features, combustion could be performed at any desired pressure up to 35 bars while controlling other parameters independently. Fuel flexibility of the applications was also taken into consideration in the design phase and proper measures have been taken in order to utilize two types of targeted fuels, methane and gasified biomass.Experimental results presented in this thesis are the operational performances of highly active precious metal catalysts (also called as ignition catalysts) and combinations of precious metal, perovskites and hexaaluminate catalysts (also called as fully catalytic configuration). Experiments were performed on different catalytic combustor configurations of various types of catalysts with methane and simulated gasified biomass over the full range of pressure. The types of catalysts considered on the combustor configurations are palladium on alumina (Pd/AL2O3), palladium lanthanum hexaaluminate (PdLaAl11O19), platinum on alumina (Pt/AL2O3),and palladium:platinum bi-metal on alumina (Pd:Pt/AL2O3). The influence of pressure, inlet temperature, flow velocity and air fuel ratio on the ignition, combustion stability and emission generation on the catalytic system were investigated and presented.Combustion catalysts were developed and provided mainly by the project partner, the Division of Chemical Technology, KTH. Division of Chemical Reaction Technology, KTH and Istituto di Ricerche sulla Combustione (CNR) Italy were also collaborated with some of the experimental investigations by providing specific types of catalysts developed by them for the specific conditions of gas turbine requirements.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy