SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fricke K.) ;lar1:(su)"

Sökning: WFRF:(Fricke K.) > Stockholms universitet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Achtert, Peggy, 1982-, et al. (författare)
  • Investigation of polar stratospheric clouds in January 2008 by means of ground-based and spaceborne lidar measurements and microphysical box model simulations
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. D07201-
  • Tidskriftsartikel (refereegranskat)abstract
    • Polar stratospheric clouds (PSCs) play a key role in heterogeneous chemistry and ozone depletion in the lower stratosphere. The type of PSC as well as their temporal and spatial extent are important for the occurrence of heterogeneous reactions and, thus, ozone depletion. In this study a combination of ground-based and spaceborne lidar measurements were used together with microphysical box model simulations along back trajectories to investigate the formation and alteration of Arctic PSCs. The measurements were made by the Rayleigh/Mie/Raman lidar system at Esrange and by the Cloud-Aerosol Lidar with Orthogonal Polarization aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. Between 20 and 23 January 2008 PSCs composed of liquid particles were observed by CALIPSO between Greenland and the western side of the Scandinavian Mountains. Between 21 and 23 January 2008 the Esrange lidar observed a PSC composed of distinct layers of liquid and solid particles on the eastern side of the mountain range. Microphysical box model simulations along air parcel back trajectories indicate that liquid particles had formed at least 40 h before the observation at Esrange. Furthermore, the model indicates a high HNO(3) uptake into the liquid layer between 10 and 20 h before the observation. The PSC was formed when the air mass was over Greenland. On two occasions during these 20 h, CALIPSO observed PSCs when its measurement tracks crossed the air parcel back trajectory ending at the location of the Esrange lidar. Backscatter ratios calculated from the output of the box model simulation indicate good agreement with the values observed with the Esrange lidar and by CALIPSO. The box model simulations along the back trajectories from Esrange to the CALIPSO ground track and beyond provide us with the unique opportunity to relate ground-based and spaceborne lidar measurements that were not performed at the same spatial location and time. Furthermore, possible differences in the observations from ground and space can be traced to temporal and/or geographically induced changes in particle microphysics within the measured PSCs.
  •  
2.
  • Blum, Ulrich, et al. (författare)
  • Simultaneous lidar observations of a polar stratospheric cloud on the east and west side of the Scandinavian mountains and microphysical box model simulations
  • 2006
  • Ingår i: Annales Geophysicae. ; 24, s. 3267-3277
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of polar stratospheric clouds (PSC) for polar ozone depletion is well established. Lidar experiments are well suited to observe and classify polar stratospheric clouds. On 5 January 2005 a PSC was observed simultaneously on the east and west sides of the Scandinavian mountains by ground-based lidars. This cloud was composed of liquid particles with a mixture of solid particles in the upper part of the cloud. Multi-colour measurements revealed that the liquid particles had a mode radius of r~300 nm, a distribution width of ~1.04 and an altitude dependent number density of N~2–20 cm−3. Simulations with a microphysical box model show that the cloud had formed about 20 h before observation. High HNO3 concentrations in the PSC of 40–50 weight percent were simulated in the altitude regions where the liquid particles were observed, while this concentration was reduced to about 10 weight percent in that part of the cloud where a mixture between solid and liquid particles was observed by the lidar. The model simulations also revealed a very narrow particle size distribution with values similar to the lidar observations. Below and above the cloud almost no HNO3 uptake was simulated. Although the PSC shows distinct wave signatures, no gravity wave activity was observed in the temperature profiles measured by the lidars and meteorological analyses support this observation. The observed cloud must have formed in a wave field above Iceland about 20 h prior to the measurements and the cloud wave pattern was advected by the background wind to Scandinavia. In this wave field above Iceland temperatures potentially dropped below the ice formation temperature, so that ice clouds may have formed which can act as condensation nuclei for the nitric acid trihydrate (NAT) particles observed at the cloud top above Esrange.
  •  
3.
  • Guseva, N. G., et al. (författare)
  • VLT spectroscopy of low-metallicity emission-line galaxies : abundance patterns and abundance discrepancies
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 529, s. A149-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We present deep spectroscopy of a large sample of low-metallicity emission-line galaxies. Aims. The main goal of this study is to derive element abundances in these low-metallicity galaxies. Methods. We analyze 121 VLT spectra of H II regions in 46 low-metallicity emission-line galaxies. Of these spectra 83 are archival VLT/FORS1 + UVES spectra of H II regions in 31 low-metallicity emission-line galaxies that are studied for the first time with standard direct methods to determine the electron temperatures, the electron number densities, and the chemical abundances. Results. The oxygen abundance of the sample lies in the range 12 + log O/H = 7.2-8.4. We confirm previous findings that Ne/O increases with increasing oxygen abundance, likely because of a higher depletion of oxygen in higher-metallicity galaxies. The Fe/O ratio decreases from roughly solar at the lowest metallicities to about one tenth of solar, indicating that the degree of depletion of iron into dust grains depends on metallicity. The N/O ratio in extremely low-metallicity galaxies with 12 + log O/H < 7.5 shows a slight increase with decreasing oxygen abundance, which could be the signature of enhanced production of primary nitrogen by rapidly rotating stars at low metallicity. We present the first empirical relation between the electron temperature derived from [S III]lambda 6312/lambda 9069 or [N II]lambda 5755/lambda 6583 and the one derived from [O III]lambda 4363/lambda(4959 + 5007) in low-metallicity galaxies. We also present an empirical relation between t(e) derived from [O II]lambda 3727/(lambda 7320 + lambda 7330) or [S II]lambda 4068/(lambda 6717 + lambda 6730) and [O III]lambda 4363/lambda(4959 + 5007). The electron number densities N(e)(Cl III) and N(e)(Ar IV) were derived in a number of objects and are found to be higher than N(e)(O II) and N(e)(S II). This has potential implications for the derivation of the pregalactic helium abundance. In a number of objects, the abundances of C(++) and O(++) could be derived from recombination lines. Our study confirms the discrepancy between abundances found from recombination lines (RLs) and collisionally excited lines (CELs) and that C/O increases with O/H.
  •  
4.
  • Izotov, Y. I., et al. (författare)
  • Tol 2240-384-a new low-metallicity AGN candidate
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 517, s. A90-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Active galactic nuclei (AGNs) have typically been discovered in massive galaxies of high metallicity. Aims. We attempt to increase the number of AGN candidates in low metallicity galaxies. We present VLT/UVES and archival VLT/FORS1 spectroscopic and NTT/SUSI2 photometric observations of the low-metallicity emission-line galaxy Tol 2240-384 and perform a detailed study of its morphology, chemical composition, and emission-line profiles. Methods. The profiles of emission lines in the UVES and FORS1 spectra are decomposed into several components with different kinematical properties by performing multicomponent fitting with Gaussians. We determine abundances of nitrogen, oxygen, neon, sulfur, chlorine, argon, and iron by analyzing the fluxes of narrow components of the emission lines using empirical methods. We verify with a photoionisation model that the physics of the narrow-line component gas is similar to that in common metal-poor galaxies. Results. Image deconvolution reveals two high-surface brightness regions in Tol 2240-384 separated by 2.4 kpc. The brightest southwestern region is surrounded by intense ionised gas emission that strongly affects the observed B - R colour on a spatial scale of similar to 5 kpc. The profiles of the strong emission lines in the UVES spectrum are asymmetric and all these lines apart from H alpha and H beta can be fitted by two Gaussians of FWHM similar to 75-92 km s(-1) separated by similar to 80 km s(-1) implying that there are two regions of ionised gas emitting narrow lines. The oxygen abundances in both regions are equal within the errors and in the range 12 + log O/H = 7.83-7.89. The shapes of the H alpha and H beta lines are more complex. In particular, the H alpha emission line consists of two broad components of FWHM similar to 700 km s(-1) and 2300 km s(-1), in addition to narrow components of two regions revealed from profiles of other lines. This broad emission in H alpha and H beta associated with the high-excitation, brighter southwestern H II region of the galaxy is also present in the archival low-and medium-resolution VLT/FORS1 spectra. The extraordinarily high luminosity of the broad H alpha line of 3x10(41) erg s(-1) cannot be accounted for by massive stars at different stages of their evolution. The broad Ha emission persists over a period of 7 years, which excludes supernovae as a powering mechanism of this emission. This emission most likely arises from an accretion disc around a black hole of mass similar to 10(7) M-circle dot.
  •  
5.
  • Khosrawi, Farahnaz, et al. (författare)
  • Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:16, s. 8471-8487
  • Tidskriftsartikel (refereegranskat)abstract
    • The sedimentation of HNO3 containing PolarStratospheric Cloud (PSC) particles leads to a permanent re-moval of HNO3 and thus to a denitrification of the strato-sphere, an effect which plays an important role in strato-spheric ozone depletion. The polar vortex in the Arctic win-ter 2009/2010 was very cold and stable between end of De-cember and end of January. Strong denitrification between 475 to 525 K was observed in the Arctic in mid of Januaryby the Odin Sub Millimetre Radiometer (Odin/SMR). Thiswas the strongest denitrification that had been observed inthe entire Odin/SMR measuring period (2001–2010). Lidarmeasurements of PSCs were performed in the area of Kiruna,Northern Sweden with the IRF (Institutet för Rymdfysik) li-odar and with the Esrange lidar in January 2010. The measurements show that PSCs were present over the area of Kirunaduring the entire period of observations. The formation ofPSCs during the Arctic winter 2009/2010 is investigated using a microphysical box model. Box model simulationsare performed along air parcel trajectories calculated sixdays backward according to the PSC measurements with the ground-based lidar in the Kiruna area. From the temperaturehistory of the backward trajectories and the box model simulations we find two PSC regions, one over Kiruna accordingto the measurements made in Kiruna and one north of Scandinavia which is much colder, reaching also temperatures below Tice. Using the box model  trajectories together with the observations of Odin/SMR,Aura/MLS (Microwave Limb Sounder), CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)and the ground-based lidar we investigate how and by whichtype of PSC particles the denitrification that was observedduring the Arctic winter 2009/2010 was caused. From ouranalysis we find that due to an unusually strong synopticcooling event in mid January, ice particle formation on NATmay be a possible formation mechanism during that particu-lar winter that may have caused the denitrification observed in mid January. In contrast, the denitrification that was observed in the beginning of January could have been caused by the sedimentation of NAT particles that formed on moun-tain wave ice clouds.
  •  
6.
  • Lossow, Stefan, et al. (författare)
  • Middle atmospheric water vapour and dynamics in the vicinity of the polar vortex during the Hygrosonde-2 campaign
  • 2009
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 9, s. 4407-4417
  • Tidskriftsartikel (refereegranskat)abstract
    • The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E) with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios. From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1) a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy