SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Friedland L.) ;conttype:(refereed)"

Search: WFRF:(Friedland L.) > Peer-reviewed

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Amole, C., et al. (author)
  • Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production
  • 2013
  • In: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:4, s. 043510-
  • Journal article (peer-reviewed)abstract
    • One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge-parity-time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield achieved in recent experiments must be significantly improved before this can be realized. Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron dynamics during the mixing process. The simulation is benchmarked against other numerical and analytic models, as well as experimental measurements. The autoresonant injection scheme and an alternative scheme are compared numerically over a range of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and the latter scheme is seen to offer significant improvement in trapping yield as the number of available antiprotons increases.
  •  
3.
  • Lundberg, C, et al. (author)
  • Dementia and driving: an attempt at consensus
  • 1997
  • In: Alzheimer disease and associated disorders. - : Ovid Technologies (Wolters Kluwer Health). - 0893-0341. ; 11:1, s. 28-37
  • Journal article (peer-reviewed)
  •  
4.
  • Anchordoqui, Luis A., et al. (author)
  • The Forward Physics Facility : Sites, experiments, and physics potential
  • 2022
  • In: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 968, s. 1-50
  • Journal article (peer-reviewed)abstract
    • The Forward Physics Facility (FPF) is a proposal to create a cavern with the space and infrastructure to support a suite of far-forward experiments at the Large Hadron Collider during the High Luminosity era. Located along the beam collision axis and shielded from the interaction point by at least 100 m of concrete and rock, the FPF will house experiments that will detect particles outside the acceptance of the existing large LHC experiments and will observe rare and exotic processes in an extremely low-background environment. In this work, we summarize the current status of plans for the FPF, including recent progress in civil engineering in identifying promising sites for the FPF and the experiments currently envisioned to realize the FPF's physics potential. We then review the many Standard Model and new physics topics that will be advanced by the FPF, including searches for long-lived particles, probes of dark matter and dark sectors, high-statistics studies of TeV neutrinos of all three flavors, aspects of perturbative and non-perturbative QCD, and high-energy astroparticle physics.
  •  
5.
  • Borroto-Escuela, DO, et al. (author)
  • Multiple D2 heteroreceptor complexes: new targets for treatment of schizophrenia
  • 2016
  • In: Therapeutic advances in psychopharmacology. - : SAGE Publications. - 2045-1253 .- 2045-1261. ; 6:2, s. 77-94
  • Journal article (peer-reviewed)abstract
    • The dopamine (DA) neuron system most relevant for schizophrenia is the meso-limbic-cortical DA system inter alia densely innervating subcortical limbic regions. The field of dopamine D2 receptors and schizophrenia changed markedly with the discovery of many types of D2 heteroreceptor complexes in subcortical limbic areas as well as the dorsal striatum. The results indicate that the D2 is a hub receptor which interacts not only with many other G protein-coupled receptors (GPCRs) including DA isoreceptors but also with ion-channel receptors, receptor tyrosine kinases, scaffolding proteins and DA transporters. Disturbances in several of these D2 heteroreceptor complexes may contribute to the development of schizophrenia through changes in the balance of diverse D2 homo- and heteroreceptor complexes mediating the DA signal, especially to the ventral striato-pallidal γ-aminobutyric acid (GABA) pathway. This will have consequences for the control of this pathway of the glutamate drive to the prefrontal cortex via the mediodorsal thalamic nucleus which can contribute to psychotic processes. Agonist activation of the A2A protomer in the A2A–D2 heteroreceptor complex inhibits D2 Gi/o mediated signaling but increases the D2 β-arrestin2 mediated signaling. Through this allosteric receptor–receptor interaction, the A2A agonist becomes a biased inhibitory modulator of the Gi/o mediated D2 signaling, which may the main mechanism for its atypical antipsychotic properties especially linked to the limbic A2A–D2 heterocomplexes. The DA and glutamate hypotheses of schizophrenia come together in the signal integration in D2– N-methyl-d-aspartate (NMDA) and A2A–D2–metabotropic glutamate receptor 5 (mGlu5) heteroreceptor complexes, especially in the ventral striatum. 5-Hydroxytryptamine 2A (5-HT2A)–D2 heteroreceptor complexes are special targets for atypical antipsychotics with high potency to block their 5-HT2A protomer signaling in view of the potential development of pathological allosteric facilitatory 5-HT2A–D2 interaction increasing D2 protomer signaling. Neurotensin (NTS1)–D2 heterocomplexes also exist in the ventral and dorsal striatum, and likely also in midbrain DA nerve cells as NTS1-D2 autoreceptor complexes where neurotensin produces antipsychotic and propsychotic actions, respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view