SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Friel E.) ;lar1:(hh)"

Sökning: WFRF:(Friel E.) > Högskolan i Halmstad

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Friel, R. J., 1982-, et al. (författare)
  • The effect of interface topography for Ultrasonic Consolidation of aluminium
  • 2010
  • Ingår i: Journal of Materials Science and Engineering. - New York, NY : David Publishing Company. - 2161-6213 .- 0921-5093. ; 527:16-17, s. 4474-4483
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrasonic Consolidation (UC) is an additive manufacturing technology which is based on the sequential solid-state ultrasonic welding of metal foils. UC presents a rapid and adaptive alternative process, to other metal-matrix embedding technologies, for 'smart' metal composite material production. A challenge that exists however relates to optimising, for bond density and plastic flow, the interlaminar textures themselves that serve as the contact surfaces between the foils.UC employs a sonotrode connected to a transducer to exude ultrasonic energy into the metal foil being sequentially deposited. This sonotrode to metal contact imparts a noteworthy topology to the processed metals surface that in turn becomes the crucial substrate topology of the subsequent layers deposition. This work investigated UC processed Al 3003 samples to ascertain the effect of this imparted topology on subsequent layer deposition. Surface and interlaminar topology profiles were characterised using interferometry, electron and light microscopy. The physical effect of the topology profiles was quantified via the use of peel testing.The imparted topology profile was found to be of fundamental significance to the mechanical performance and bond density achieved within the bulk laminate during UC. The UC process parameters and sonotrode topology performed a key role in modifying this topology profile. The concept of using a specifically textured sonotrode to attain desired future smart material performance via UC is proposed by the authors. © 2010 Elsevier B.V.
  •  
2.
  • Raj, Pushparani, et al. (författare)
  • Fabrication and characterisation of a silicon-borosilicate glass microfluidic device for synchrotron-based hard X-ray spectroscopy studies
  • 2021
  • Ingår i: RSC Advances. - Cambridge : RSC Publishing. - 2046-2069. ; 11:47, s. 29859-29869
  • Tidskriftsartikel (refereegranskat)abstract
    • Some of the most fundamental chemical building blocks of life on Earth are the metal elements. X-ray absorption spectroscopy (XAS) is an element-specific technique that can analyse the local atomic and electronic structure of, for example, the active sites in catalysts and energy materials and allow the metal sites in biological samples to be identified and understood. A microfluidic device capable of withstanding the intense hard X-ray beams of a 4th generation synchrotron and harsh chemical sample conditions is presented in this work. The device is evaluated at the K-edges of iron and bromine and the L3-edge of lead, in both transmission and fluorescence mode detection and in a wide range of sample concentrations, as low as 0.001 M. The device is fabricated in silicon and glass with plasma etched microchannels defined in the silicon wafer before anodic bonding of the glass wafer into a complete device. The device is supported with a well-designed printed chip holder that made the microfluidic device portable and easy to handle. The chip holder plays a pivotal role in mounting the delicate microfluidic device on the beamline stage. Testing validated that the device was sufficiently robust to contain and flow through harsh acids and toxic samples. There was also no significant radiation damage to the device observed, despite focusing with intense X-ray beams for multiple hours. The quality of X-ray spectra collected is comparable to that from standard methods; hence we present a robust microfluidic device to analyse liquid samples using synchrotron XAS.
  •  
3.
  • Schwope, L-A, et al. (författare)
  • Field repair and replacement part fabrication of military components using ultrasonic consolidation cold metal deposition
  • 2009
  • Ingår i: NATO Science and Technology Organization. ; , s. 22-1-22-12
  • Konferensbidrag (refereegranskat)abstract
    • Timely repair and replacement of military components without degrading material properties offers tremendous opportunities for cost and schedule savings on a number of military platforms. Effective field-based additive manufacturing repair approaches have proven difficult to develop, as conventional additive metal deposition technologies typically include a molten phase transformation and controlled inert deposition environments. The molten stage of laser and electron beam based additive processes unfortunately results in large dimensional and microstructural changes to the component being repaired or re-fabricated. As a result, high residual stresses and unpredictable ductility profiles in the repair area, or the re-fabricated part, make the final product unsafe for redeployment. Specifically, the heat affected zone associated with traditional deposition-based repair methods can produce a low strength, non-homogenous region at the joint; these changes in the materials properties of the repaired parts are detrimental to the fatigue life, and are a major concern where cyclic loading is experienced. The use of solid state high power Ultrasonic Consolidation (UC) technologies avoids the liquid-solid transition complexity and creates a predictable “cold” bond. This method then allows for strong, homogenous structures to be manufactured and repaired in the field and opens the door for the use of high strength repair material that may reduce the frequency of future failure itself. In addition, UC further offers the opportunity to provide enhanced functionality and ruggedness to a component either during repair or from original manufacture by allowing the embedding of passive and functional elements into the new fabricated component or feature.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy