SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fritzsche Joachim) ;pers:(Mehlig Bernhard)"

Sökning: WFRF:(Fritzsche Joachim) > Mehlig Bernhard

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alizadehheidari, Mohammadreza, 1987, et al. (författare)
  • Nanoconfined Circular and Linear DNA: Equilibrium Conformations and Unfolding Kinetics
  • 2015
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 0024-9297 .- 1520-5835. ; 48:3, s. 871-878
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of circular DNA confined to nanofluidic channels are relevant both from a fundamental polymer-physics perspective and due to the importance of circular DNA molecules in vivo. We here observe the unfolding of confined DNA from the circular to linear configuration as a light-induced double-strand break occurs, characterize the dynamics, and compare the equilibrium conformational statistics of linear and circular configurations. This is important because it allows us to determine to what extent existing statistical theories describe the extension of confined circular DNA. We find that the ratio of the extensions of confined linear and circular DNA configurations increases as the buffer concentration decreases. The experimental results fall between theoretical predictions for the extended de Gennes regime at weaker confinement and the Odijk regime at stronger confinement. We show that it is possible to directly distinguish between circular and linear DNA molecules by measuring the emission intensity from the DNA. Finally, we determine the rate of unfolding and show that this rate is larger for more confined DNA, possibly reflecting the corresponding larger difference in entropy between the circular and linear configurations.
  •  
2.
  • Alizadehheidari, Mohammadreza, et al. (författare)
  • Nanoconfined Circular DNA
  • 2014
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 106:2, s. 274A-274A
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Nanofluidic channels have become a versatile tool to manipulate single DNA molecules. They allow investigation of confined single DNA molecules from a fundamental polymer physics perspective as well as for example in DNA barcoding techniques.
  •  
3.
  • Alizadehheidari, Mohammadreza, 1987, et al. (författare)
  • Unfolding of nanoconfined circular DNA
  • 2015
  • Ingår i: BIOPHYSICAL JOURNAL. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 108:2 Supplement 1, s. 231A-231A
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
4.
  • Fornander, Louise, 1984, et al. (författare)
  • Using nanofluidic channels to probe dynamics of RAD51-Filaments
  • 2015
  • Ingår i: 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2014. - 9780979806476 ; , s. 1826-1828
  • Konferensbidrag (refereegranskat)abstract
    • Using nanochannels, passivated with a lipid bilayer to avoid sticking of proteins, we study Rad51 filaments bound to single- and double stranded DNA. We demonstrate how we can discern different properties of the filaments by studying them at different degrees of confinement. Unlike the bacterial homologue RecA, that forms homogeneous filaments along DNA, Rad51 forms heterogeneous filaments containing both rigid kinks as well as flexible regions. Varying the counterion, the DNA substrate as well as the initial protein concentration, we try to understand the factors governing the structure of the filaments.
  •  
5.
  • Fornander, Louise, 1984, et al. (författare)
  • Visualizing the Nonhomogeneous Structure of RAD51 Filaments Using Nanofluidic Channels
  • 2016
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 32:33, s. 8403-8412
  • Tidskriftsartikel (refereegranskat)abstract
    • RAD51 is the key component of the homologous recombination pathway in eukaryotic cells and performs its task by forming filaments on DNA. In this study we investigate the physical properties of RAD51 filaments formed on DNA using nanofluidic channels and fluorescence microscopy. Contrary to the bacterial ortholog RecA, RAD51 forms inhomogeneous filaments on long DNA in vitro, consisting of several protein patches. We demonstrate that a permanent "kink" in the filament is formed where two patches meet if the stretch of naked DNA between the patches is short. The kinks are readily seen in the present microscopy approach but would be hard to identify using conventional single DNA molecule techniques where the DNA is more stretched. We also demonstrate that protein patches separated by longer stretches of bare DNA roll up on each other and this is visualized as transiently overlapping filaments. RAD51 filaments can be formed at several different conditions, varying the cation (Mg2+ or Ca2+), the DNA substrate (single-stranded or double-stranded), and the RAD51 concentration during filament nucleation, and we compare the properties of the different filaments formed. The results provide important information regarding the physical properties of RAD51 filaments but also demonstrate that nanofluidic channels are perfectly suited to study protein-DNA complexes.
  •  
6.
  • Iarko, V., et al. (författare)
  • Extension of nanoconfined DNA: Quantitative comparison between experiment and theory
  • 2015
  • Ingår i: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics). - 1539-3755 .- 1550-2376. ; 92:6, s. Art. Nr. 062701-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extension of DNA confined to nanochannels has been studied intensively and in detail. However, quantitative comparisons between experiments and model calculations are difficult because most theoretical predictions involve undetermined prefactors, and because the model parameters (contour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the "extended de Gennes regime" that allows us to compare experimental results with theory. For this purpose, we performed experiments measuring the mean DNA extension and its standard deviation while varying the channel geometry, dye intercalation ratio, and ionic strength of the buffer. The experimental results agree very well with theory at high ionic strengths, indicating that the model parameters are reliable. At low ionic strengths, the agreement is less good. We discuss possible reasons. In principle, our approach allows us to measure the Kuhn length and the effective width of a single DNA molecule and more generally of semiflexible polymers in solution.
  •  
7.
  • Werner, Erik, et al. (författare)
  • Hairpins in the conformations of a confined polymer
  • 2018
  • Ingår i: Biomicrofluidics. - : AIP Publishing. - 1932-1058. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • If a semiflexible polymer confined to a narrow channel bends around by 180°, the polymer is said to exhibit a hairpin. The equilibrium extension statistics of the confined polymer are well understood when hairpins are vanishingly rare or when they are plentiful. Here, we analyze the extension statistics in the intermediate situation via experiments with DNA coated by the protein RecA, which enhances the stiffness of the DNA molecule by approximately one order of magnitude. We find that the extension distribution is highly non-Gaussian, in good agreement with Monte-Carlo simulations of confined discrete wormlike chains. We develop a simple model that qualitatively explains the form of the extension distribution. The model shows that the tail of the distribution at short extensions is determined by conformations with one hairpin. © 2018 Author(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy