SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fryday Alan) "

Sökning: WFRF:(Fryday Alan)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
2.
  •  
3.
  • Fryday, Alan M., et al. (författare)
  • Bryobilimbia, a new generic name for Lecidea hypnorum and closely related species
  • 2014
  • Ingår i: The Lichenologist. - 0024-2829 .- 1096-1135. ; 46:1, s. 25-37
  • Tidskriftsartikel (refereegranskat)abstract
    • The new generic name Bryobilimbia is proposed for Lecidea hypnorum and the closely related taxa Lecidea ahlesii var. ahlesii, L. ahlesii var. nemoralis, L. diapensiae, L. sanguineoatra and Mycobilimbia australis. A phylogenetic analysis based on five genes shows that Lecidea berengeriana does not belong to this group but is more closely related to Romjularia. Both groups of species have been included in Mycobilimbia by some authors but are instead shown to be most closely related to a group of genera ( including Clauzadea, Farnoldia, Lecidoma and Romjularia) that do not belong to Lecideaceae s. str. A neotype is selected for Lichen sanguineoater Wulfen and the new combinations Bryobilimbia ahlesii var. ahlesii, B. ahlesii var. nemoralis, B. australis, B. diapensiae, B. hypnorum and B. sanguineoatra are proposed. A lectotype is also selected for L. templetonii Taylor.
  •  
4.
  • Resl, Philipp, et al. (författare)
  • Diagnostics for a troubled backbone: testing topologicalhypotheses of trapelioid lichenized fungi in a large-scalephylogeny of Ostropomycetidae (Lecanoromycetes)
  • 2015
  • Ingår i: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 73, s. 239-275
  • Tidskriftsartikel (refereegranskat)abstract
    • Trapelioid fungi constitute a widespread groupof mostly crust-forming lichen mycobionts that are key tounderstanding the early evolutionary splits in theOstropomycetidae, the second-most species-rich subclassof lichenized Ascomycota. The uncertain phylogeneticresolution of the approximately 170 species referred tothis group contributes to a poorly resolved backbone forthe entire subclass. Based on a data set including 657newly generated sequences from four ribosomal and fourprotein-coding gene loci, we tested a series of a priori andnew evolutionary hypotheses regarding the relationshipsof trapelioid clades within Ostropomycetidae. We foundstrong support for a monophyletic group of nine coretrapelioid genera but no statistical support to reject thelong-standing hypothesis that trapelioid genera are sisterto Baeomycetaceae or Hymeneliaceae. However, we canreject a sister group relationship to Ostropales with highconfidence. Our data also shed light on several longstandingquestions, recovering Anamylopsoraceae nestedwithin Baeomycetaceae, elucidating two major monophyleticgroups within trapelioids (recognized here asTrapeliaceae and Xylographaceae), and rejecting themonophyly of the genus Rimularia. We transfer elevenspecies of the latter genus to Lambiella and describe thegenus Parainoa to accommodate a previously misunderstoodspecies of Trapeliopsis. Past phylogenetic studies inOstropomycetidae have invoked Bdivergence order^ fordrawing taxonomic conclusions on higher level taxa.Our data show that if backbone support is lacking, contrastingsolutions may be recovered with different oradded data. We accordingly urge caution in concludingevolutionary relationships from unresolved phylogenies.
  •  
5.
  • Spribille, Toby, et al. (författare)
  • Lichens and associated fungi from Glacier Bay National Park, Alaska
  • 2020
  • Ingår i: The Lichenologist. - 0024-2829 .- 1096-1135. ; 52:2, s. 61-181
  • Tidskriftsartikel (refereegranskat)abstract
    • Lichens are widely acknowledged to be a key component of high latitude ecosystems. However, the time investment needed for full inventories and the lack of taxonomic identification resources for crustose lichen and lichenicolous fungal diversity have hampered efforts to fully gauge the depth of species richness in these ecosystems. Using a combination of classical field inventory and extensive deployment of chemical and molecular analysis, we assessed the diversity of lichens and associated fungi in Glacier Bay National Park, Alaska (USA), a mixed landscape of coastal boreal rainforest and early successional low elevation habitats deglaciated after the Little Ice Age. We collected nearly 5000 specimens and found a total of 947 taxa, including 831 taxa of lichen-forming and 96 taxa of lichenicolous fungi together with 20 taxa of saprotrophic fungi typically included in lichen studies. A total of 98 species (10.3% of those detected) could not be assigned to known species and of those, two genera and 27 species are described here as new to science: Atrophysma cyanomelanos gen. et sp. nov., Bacidina circumpulla, Biatora marmorea, Carneothele sphagnicola gen. et sp. nov., Cirrenalia lichenicola, Corticifraga nephromatis, Fuscidea muskeg, Fuscopannaria dillmaniae, Halecania athallina, Hydropunctaria alaskana, Lambiella aliphatica, Lecania hydrophobica, Lecanora viridipruinosa, Lecidea griseomarginata, L. streveleri, Miriquidica gyrizans, Niesslia peltigerae, Ochrolechia cooperi, Placynthium glaciale, Porpidia seakensis, Rhizocarpon haidense, Sagiolechia phaeospora, Sclerococcum fissurinae, Spilonema maritimum, Thelocarpon immersum, Toensbergia blastidiata and Xenonectriella nephromatis. An additional 71 'known unknown' species are cursorily described. Four new combinations are made: Lepra subvelata (G. K. Merr.) T. Sprib., Ochrolechia minuta (Degel.) T. Sprib., Steineropsis laceratula (Hue) T. Sprib. & Ekman and Toensbergia geminipara (Th. Fr.) T. Sprib. & Resl. Thirty-eight taxa are new to North America and 93 additional taxa new to Alaska. We use four to eight DNA loci to validate the placement of ten of the new species in the orders Baeomycetales, Ostropales, Lecanorales, Peltigerales, Pertusariales and the broader class Lecanoromycetes with maximum likelihood analyses. We present a total of 280 new fungal DNA sequences. The lichen inventory from Glacier Bay National Park represents the second largest number of lichens and associated fungi documented from an area of comparable size and the largest to date in North America. Coming from almost 60 degrees N, these results again underline the potential for high lichen diversity in high latitude ecosystems.
  •  
6.
  • Staples, Richard, et al. (författare)
  • Structure and Chemical Analysis of Major Specialized Metabolites Produced by the Lichen Evernia prunastri
  • 2020
  • Ingår i: Chemistry and Biodiversity. - : Wiley. - 1612-1872 .- 1612-1880. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed comparative profiling of four specialized metabolites in the lichen Evernia prunastri, collected at three different geographic locations, California and Maine, USA, and Yoshkar Ola, Mari El, Russia. Among the compounds produced at high concentrations that were identified in all three specimens, evernic acid, usnic acid, lecanoric acid and chloroatranorin, evernic acid was the most abundant. Two depsidones, salazinic acid and physodic acid, were detected in the Yoshkar‐Ola collection only. The crystalline structure of evernic acid (2‐hydroxy‐4‐[(2‐hydroxy‐4‐methoxy‐6‐methylbenzoyl)oxy]‐6‐methylbenzoate) (hmb) revealed two crystallographically and conformationally distinct hmb anions, along with two monovalent sodium atoms. One hmb moiety contained an exotetradentate binding mode to sodium, whereas the other exhibited an exohexadentate binding mode to sodium. Embedded edge‐sharing {Na2O8}n sodium‐oxygen chains connected the hmb anions into the full three‐dimensional crystal structure of the title compound. The crystal used for single‐crystal X‐ray diffraction exhibited non‐merohedral twinning. The data suggest the importance of the acetyl‐polymalonyl pathway products to processes of maintaining integrity of the lichen holobiont community.
  •  
7.
  • Svensson, Måns, et al. (författare)
  • Gilbertaria, a first crustose genus in the Sphaerophoraceae (Lecanoromycetes, Ascomycota) for Catillaria contristans, Toninia squalescens and related species
  • 2022
  • Ingår i: Mycological progress. - : Springer. - 1617-416X .- 1861-8952. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Lecideoid lichen-forming fungi are a large, heterogeneous group that includes many species described during the nineteenth century that are of unclear taxonomic status. We revise such a group, the species of which have previously been treated under the much-misunderstood names Catillaria contristans or Toninia squalescens, and use a seven-locus phylogeny to determine its phylogenetic position. We found strong support for a previously unrecognized monophyletic lineage within the Sphaerophoraceae, comprising five phylogenetic species, and describe the new genus Gilbertaria to accommodate them. The new genus is characterized by a crustose growth form, 1-septate ascospores, thick ((1.5-)2-3(-4) mu m wide) paraphyses and asci of the Biatora-type. We revise the nomenclature and give new delimitations and descriptions of the Northern Hemisphere species Gilbertaria contristans comb. nov., G. holomeloides comb. nov., G. squalescens comb. nov. and describe the new species G. astrapeana from the Falkland Islands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy