SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fryknäs Mårten) ;pers:(Karlsson Henning)"

Sökning: WFRF:(Fryknäs Mårten) > Karlsson Henning

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karlsson, Henning, et al. (författare)
  • A novel tumor spheroid model identifies selective enhancement of radiation by an inhibitor of oxidative phosphorylation
  • 2019
  • Ingår i: Oncotarget. - Orchard Park, NY United States : Impact Journals. - 1949-2553. ; 10:51, s. 5372-5382
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for preclinical models that can enable identification of novel radiosensitizing drugs in clinically relevant high-throughput experiments. We used a new high-throughput compatible total cell kill spheroid assay to study the interaction between drugs and radiation in order to identify compounds with radiosensitizing activity. Experimental drugs were compared to known radiosensitizers and cytotoxic drugs clinically used in combination with radiotherapy. VLX600, a novel iron-chelating inhibitor of oxidative phosphorylation, potentiated the effect of radiation in tumor spheroids in a synergistic manner. This effect was specific to spheroids and not observed in monolayer cell cultures. In conclusion, the total cell kill spheroid assay is a feasible high-throughput method in the search for novel radiosensitizers. VLX600 shows encouraging characteristics for development as a novel radiosensitizer.
  •  
2.
  • Karlsson, Henning, et al. (författare)
  • Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system
  • 2012
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 318:13, s. 1577-1585
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinically relevant in vitro methods are needed to identify new cancer drugs for solid tumors. We report on a new 3-D spheroid cell culture system aimed to mimic the properties of solid tumors in vivo. The colon cancer cell lines HCT-116 wt and HCT-116 wt/GFP were grown as monolayers and for 3 or 6 days on 96-well NanoCulture (R) plates to form spheroids. Expression of surface markers, genes and hypoxia were assessed to characterize the spheroids and drug induced cytotoxicity was evaluated based on fluorescein diacetate (FDA) conversion by viable cells to fluorescent fluorescein or by direct measurement of fluorescence of GFP marked cells after a 72 h drug incubation. The cells reproducibly formed spheroids in the NanoCulture (R) plates with tight cell-attachment after 6 days. Cells in spheroids showed geno- and phenotypical properties reminiscent of hypoxic stem cells. Monolayer cultured cells were sensitive to standard and investigational drugs, whereas the spheroids gradually turned resistant. Similar results for cytotoxicity were observed using simplified direct measurement of fluorescence of GFP marked cells compared with FDA incubation. In conclusion, this new 3-D spheroid cell culture system provides a convenient and clinically relevant model for the identification and characterization of cancer drugs for solid tumors.
  •  
3.
  • Karlsson, Henning, et al. (författare)
  • Mechanistic characterization of a copper containing thiosemicarbazone with potent antitumor activity
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:18, s. 30217-30234
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The thiosemicarbazone CD 02750 (VLX50) was recently reported as a hit compound in a phenotype-based drug screen in primary cultures of patient tumor cells. We synthesized a copper complex of VLX50, denoted VLX60, and characterized its antitumor and mechanistic properties. Materials and Methods: The cytotoxic effects and mechanistic properties of VLX60 were investigated in monolayer cultures of multiple human cell lines, in tumor cells from patients, in a 3-D spheroid cell culture system and in vivo and were compared with those of VLX50. Results: VLX60 showed ?3-fold higher cytotoxic activity than VLX50 in 2-D cultures and, in contrast to VLX50, retained its activity in the presence of additional iron. VLX60 was effective against non-proliferative spheroids and against tumor xenografts in vivo in a murine model. In contrast to VLX50, gene expression analysis demonstrated that genes associated with oxidative stress were considerably enriched in cells exposed to VLX60 as was induction of reactive oxygen. VLX60 compromised the ubiquitin-proteasome system and was more active in BRAF mutated versus BRAF wild-type colon cancer cells. Conclusions: The cytotoxic effects of the copper thiosemicarbazone VLX60 differ from those of VLX50 and shows interesting features as a potential antitumor drug, notably against BRAF mutated colorectal cancer.
  •  
4.
  •  
5.
  • Karlsson, Henning, et al. (författare)
  • Selective radiosensitization by nitazoxanide of quiescent clonogenic colon cancer tumour cells
  • 2022
  • Ingår i: Oncology Letters. - : Spandidos Publications. - 1792-1074 .- 1792-1082. ; 23:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitazoxanide is a Food and Drug Administration-approved antiprotozoal drug recently demonstrated to be selectively active against quiescent and glucose-deprived tumour cells. This drug also has several characteristics that suggest its potential as a radiosensitizer. The present study aimed to investigate the interaction between nitazoxanide and radiation on human colon cancer cells cultured as monolayers, and to mimic key features of solid tumours in patients, as spheroids, as well as in xenografts in mice. In the present study, colon cancer HCT116 green fluorescent protein (GFP) cells were exposed to nitazoxanide, radiation or their combination. Cell survival was analysed by using total cell kill and clonogenic assays. DNA double-strand breaks were evaluated in the spheroid experiments, and HCT116 GFP cell xenograft tumours in mice were used to investigate the effect of nitazoxanide and radiation in vivo. In the clonogenic assay, nitazoxanide synergistically and selectively sensitized cells grown as spheroids to radiation. However, this was not observed in cells cultured as monolayers, as demonstrated in the total cell kill assays, and much less with the clinically established sensitizer 5-fluorouracil. The sensitizing effect from nitazoxanide was confirmed via spheroid gamma-H2A histone family member X staining. Nitazoxanide and radiation alone similarly inhibited the growth of HCT116 GFP cell xenograft tumours in mice with no evidence of synergistic interaction. In conclusion, nitazoxanide selectively targeted quiescent glucose-deprived tumour cells and sensitized these cells to radiation in vitro. Nitazoxanide also inhibited tumour growth in vivo. Thus, nitazoxanide is a candidate for repurposing into an anticancer drug, including its use as a radiosensitizer.
  •  
6.
  • Kashif, Muhammad, et al. (författare)
  • In vitro discovery of promising anti-cancer drug combinations using iterative maximisation of a therapeutic index
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • In vitro-based search for promising anti-cancer drug combinations may provide important leads to improved cancer therapies. Currently there are no integrated computational-experimental methods specifically designed to search for combinations, maximizing a predefined therapeutic index (TI) defined in terms of appropriate model systems. Here, such a pipeline is presented allowing the search for optimal combinations among an arbitrary number of drugs while also taking experimental variability into account. The TI optimized is the cytotoxicity difference (in vitro) between a target model and an adverse side effect model. Focusing on colorectal carcinoma (CRC), the pipeline provided several combinations that are effective in six different CRC models with limited cytotoxicity in normal cell models. Herein we describe the identification of the combination (Trichostatin A, Afungin, 17-AAG) and present results from subsequent characterisations, including efficacy in primary cultures of tumour cells from CRC patients. We hypothesize that its effect derives from potentiation of the proteotoxic action of 17-AAG by Trichostatin A and Afungin. The discovered drug combinations against CRC are significant findings themselves and also indicate that the proposed strategy has great potential for suggesting drug combination treatments suitable for other cancer types as well as for other complex diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy