SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fryknäs Mårten) ;pers:(Zhang Xiaonan)"

Sökning: WFRF:(Fryknäs Mårten) > Zhang Xiaonan

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aftab, Obaid, 1984-, et al. (författare)
  • Label-free detection and dynamic monitoring of drug-induced intracellular vesicle formation enabled using a 2-dimensional matched filter
  • 2014
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 10:1, s. 57-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of vesicle formation and degradation is a central issue in autophagy research and microscopy imaging is revolutionizing the study of such dynamic events inside living cells. A limiting factor is the need for labeling techniques that are labor intensive, expensive, and not always completely reliable. To enable label-free analyses we introduced a generic computational algorithm, the label-free vesicle detector (LFVD), which relies on a matched filter designed to identify circular vesicles within cells using only phase-contrast microscopy images. First, the usefulness of the LFVD is illustrated by presenting successful detections of autophagy modulating drugs found by analyzing the human colorectal carcinoma cell line HCT116 exposed to each substance among 1266 pharmacologically active compounds. Some top hits were characterized with respect to their activity as autophagy modulators using independent in vitro labeling of acidic organelles, detection of LC3-II protein, and analysis of the autophagic flux. Selected detection results for 2 additional cell lines (DLD1 and RKO) demonstrate the generality of the method. In a second experiment, label-free monitoring of dose-dependent vesicle formation kinetics is demonstrated by recorded detection of vesicles over time at different drug concentrations. In conclusion, label-free detection and dynamic monitoring of vesicle formation during autophagy is enabled using the LFVD approach introduced.
  •  
2.
  • Brnjic, Slavica, et al. (författare)
  • Induction of Tumor Cell Apoptosis by a Proteasome Deubiquitinase Inhibitor Is Associated with Oxidative Stress
  • 2014
  • Ingår i: Antioxidants and Redox Signaling. - : Mary Ann Liebert Inc. - 1523-0864 .- 1557-7716. ; 21:17, s. 2271-2285
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: b-AP15 is a recently described inhibitor of the USP14/UCHL5 deubiquitinases (DUBs) of the 19S proteasome. Exposure to b-AP15 results in blocking of proteasome function and accumulation of polyubiquitinated protein substrates in cells. This novel mechanism of proteasome inhibition may potentially be exploited for cancer therapy, in particular for treatment of malignancies resistant to currently used proteasome inhibitors. The aim of the present study was to characterize the cellular response to b-AP15-mediated proteasome DUB inhibition. Results: We report that b-AP15 elicits a similar, but yet distinct, cellular response as the clinically used proteasome inhibitor bortezomib. b-AP15 induces a rapid apoptotic response, associated with enhanced induction of oxidative stress and rapid activation of Jun-N-terminal kinase 1/2 (JNK)/activating protein-1 signaling. Scavenging of reactive oxygen species and pharmacological inhibition of JNK reduced b-AP15-induced apoptosis. We further report that endoplasmic reticulum (ER) stress is induced by b-AP15 and is involved in apoptosis induction. In contrast to bortezomib, ER stress is associated with induction of alpha-subunit of eukaryotic initiation factor 2 phosphorylation. Innovation: The findings establish that different modes of proteasome inhibition result in distinct cellular responses, a finding of potential therapeutic importance. Conclusion: Our data show that enhanced oxidative stress and ER stress are major determinants of the strong apoptotic response elicited by the 19S DUB inhibitor b-AP15. Antioxid. Redox Signal. 21, 2271-2285.
  •  
3.
  • Fryknäs, Mårten, et al. (författare)
  • Iron chelators target both proliferating and quiescent cancer cells
  • 2016
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Poorly vascularized areas of solid tumors contain quiescent cell populations that are resistant to cell cycle-active cancer drugs. The compound VLX600 was recently identified to target quiescent tumor cells and to inhibit mitochondrial respiration. We here performed gene expression analysis in order to characterize the cellular response to VLX600. The compound-specific signature of VLX600 revealed a striking similarity to signatures generated by compounds known to chelate iron. Validation experiments including addition of ferrous and ferric iron in excess, EXAFS measurements, and structure activity relationship analyses showed that VLX600 chelates iron and supported the hypothesis that the biological effects of this compound is due to iron chelation. Compounds that chelate iron possess anti-cancer activity, an effect largely attributed to inhibition of ribonucleotide reductase in proliferating cells. Here we show that iron chelators decrease mitochondrial energy production, an effect poorly tolerated by metabolically stressed tumor cells. These pleiotropic features make iron chelators an attractive option for the treatment of solid tumors containing heterogeneous populations of proliferating and quiescent cells.
  •  
4.
  • Hernlund, Emma, et al. (författare)
  • The phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 is effective in inhibiting regrowth of tumour cells after cytotoxic therapy
  • 2012
  • Ingår i: European Journal of Cancer. - : Elsevier BV. - 0959-8049 .- 1879-0852. ; 48:3, s. 396-406
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE:Regrowth of tumour cells between cycles of chemotherapy is a significant clinical problem. Treatment strategies where antiproliferative agents are used to inhibit tumour regrowth between chemotherapy cycles are attractive, but such strategies are difficult to test using conventional monolayer culture systems.METHODS:We used the in vitro tumour spheroid model to study regrowth of 3-D colon carcinoma tissue after cytotoxic therapy. Colon carcinoma cells with wild-type or mutant phosphatidyl inositol 3-kinase catalytic subunit (PI3KCA) or KRAS alleles were allowed to form multicellular spheroids and the effects of different pharmacological compounds were studied after sectioning and staining for relevant markers of cell proliferation and apoptosis.RESULTS:Studies using colon cancer cells with gene disruptions suggested that the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway was essential for proliferation in 3-D culture. The dual PI3K-mTOR inhibitor NVP-BEZ235, currently in clinical trials, was found to inhibit phosphorylation of the mTOR target 4EBP1 in 3-D cultured cells. The ability of NVP-BEZ235 to inhibit tumour cell proliferation and to induce apoptosis was markedly more pronounced in 3-D cultures compared to monolayer cultures. It was subsequently found that NVP-BEZ235 was effective in inhibiting regrowth of 3-D cultured cells after treatment with two cytotoxic inhibitors of the ubiquitin-proteasome system (UPS), methyl-13-hydroxy-15-oxokaurenoate (MHOK) and bortezomib (Velcade®).CONCLUSIONS:The dual PI3K-mTOR inhibitor NVP-BEZ235 was found to reduce cell proliferation and to induce apoptosis in 3-D cultured colon carcinoma cells, NVP-BEZ235 is a promising candidate for use in sequential treatment modalities together with cytotoxic drugs to reduce the cell mass of solid tumours.
  •  
5.
  •  
6.
  •  
7.
  • Senkowski, Wojciech, et al. (författare)
  • Three-Dimensional Cell Culture-Based Screening Identifies the Anthelmintic Drug Nitazoxanide as a Candidate for Treatment of Colorectal Cancer
  • 2015
  • Ingår i: Molecular Cancer Therapeutics. - : American Association for Cancer Research. - 1535-7163 .- 1538-8514. ; 14:6, s. 1504-1516
  • Tidskriftsartikel (refereegranskat)abstract
    • Because dormant cancer cells in hypoxic and nutrient-deprived regions of solid tumors provide a major obstacle to treatment, compounds targeting those cells might have clinical benefits. Here, we describe a high-throughput drug screening approach, using glucose-deprived multicellular tumor spheroids (MCTS) with inner hypoxia, to identify compounds that specifically target this cell population. We used a concept of drug repositioning-using known molecules for new indications. This is a promising strategy to identify molecules for rapid clinical advancement. By screening 1,600 compounds with documented clinical history, we aimed to identify candidates with unforeseen potential for repositioning as anticancer drugs. Our screen identified five molecules with pronounced MCTS-selective activity: nitazoxanide, niclosamide, closantel, pyrvinium pamoate, and salinomycin. Herein, we show that all five compounds inhibit mitochondrial respiration. This suggests that cancer cells in low glucose concentrations depend on oxidative phosphorylation rather than solely glycolysis. Importantly, continuous exposure to the compounds was required to achieve effective treatment. Nitazoxanide, an FDA-approved antiprotozoal drug with excellent pharmacokinetic and safety profile, is the only molecule among the screening hits that reaches high plasma concentrations persisting for up to a few hours after single oral dose. Nitazoxanide activated the AMPK pathway and downregulated c-Myc, mTOR, and Wnt signaling at clinically achievable concentrations. Nitazoxanide combined with the cytotoxic drug irinotecan showed anticancer activity in vivo. We here report that the FDA-approved anthelmintic drug nitazoxanide could be a potential candidate for advancement into cancer clinical trials. (C) 2015 AACR.
  •  
8.
  • Wang, Xin, et al. (författare)
  • The 19S Deubiquitinase Inhibitor b-AP15 Is Enriched in Cells and Elicits Rapid Commitment to Cell Death
  • 2014
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 85:6, s. 932-945
  • Tidskriftsartikel (refereegranskat)abstract
    • b-AP15 [(3E, 5E)-3,5-bis[(4-nitrophenyl) methylidene]-1-(prop-2enoyl) piperidin-4-one] is a small molecule inhibitor of the ubiquitin specific peptidase (USP) 14/ubiquitin carboxyl-terminal hydrolase (UCH) L5 deubiquitinases of the 19S proteasome that shows antitumor activity in a number of tumor models, including multiple myeloma. b-AP15 contains an alpha,beta-unsaturated carbonyl unit that is likely to react with intracellular nucleophiles such as cysteine thiolates by Michael addition. We found that binding of b-AP15 to USP14 is partially reversible, and that inhibition of proteasome function is reversible in cells. Despite reversible binding, tumor cells are rapidly committed to apoptosis/cell death after exposure to b-AP15. We show that b-AP15 is rapidly taken up from the medium and enriched in cells. Enrichment provides an explanation of the stronger potency of the compound in cellular assays compared with in vitro biochemical assays. Cellular uptake was impaired by 30-minute pretreatment of cells with low concentrations of N-ethylmaleimide (10 mu M), suggesting that enrichment was thiol dependent. We report that in addition to inhibition of deubiquitinases, b-AP15 inhibits the selenoprotein thioredoxin reductase (TrxR). Whereas proteasome inhibition was closely associated with cell death induction, inhibition of TrxR was not. TrxR inhibition is, however, likely to contribute to triggering of oxidative stress observed with b-AP15. Furthermore, we present structure-activity, in vivo pharmacokinetic, and hepatocyte metabolism data for b-AP15. We conclude that the strong enrichment of b-AP15 in cells and a rapid commitment to apoptosis/cell death are factors that likely contribute to the strong antitumor activity of this compound.
  •  
9.
  • Zhang, Xiaonan, et al. (författare)
  • Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5, s. 3295-
  • Tidskriftsartikel (refereegranskat)abstract
    • Abnormal vascularization of solid tumours results in the development of microenvironments deprived of oxygen and nutrients that harbour slowly growing and metabolically stressed cells. Such cells display enhanced resistance to standard chemotherapeutic agents and repopulate tumours after therapy. Here we identify the small molecule VLX600 as a drug that is preferentially active against quiescent cells in colon cancer 3-D microtissues. The anticancer activity is associated with reduced mitochondrial respiration, leading to bioenergetic catastrophe and tumour cell death. VLX600 shows enhanced cytotoxic activity under conditions of nutrient starvation. Importantly, VLX600 displays tumour growth inhibition in vivo. Our findings suggest that tumour cells in metabolically compromised microenvironments have a limited ability to respond to decreased mitochondrial function, and suggest a strategy for targeting the quiescent populations of tumour cells for improved cancer treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy