SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fu Yifeng 1984) ;mspu:(conferencepaper)"

Sökning: WFRF:(Fu Yifeng 1984) > Konferensbidrag

  • Resultat 1-10 av 57
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Johan, 1960, et al. (författare)
  • 1. Thermal Characterization of Power Devices Using Graphene-based Film
  • 2014
  • Ingår i: Proceedings - Electronic Components and Technology Conference. - 0569-5503. - 9781479924073 ; , s. 459 - 463
  • Konferensbidrag (refereegranskat)abstract
    • Due to its atomic structure with sp2 hybrid orbitals and unique electronic properties, graphene has an extraordinarily high thermal conductivity which has been reported to be up to 5000 W/mK. As a consequence, the use of graphene-based materials for thermal management has been subject to substantial attention during recent years in both academia and industry. In this paper, the development of a new type of graphene-based thin film for heat dissipation in power devices is presented. The surface of the developed graphene based film is primarily composed of functionalized graphene oxide, that can be bonded chemically to the device surface and thus minimize the interface thermal resistance caused by surface roughness. A very high in-plane thermal conductivity with a maximum value of 1600 W/mK was detected by laser flash machine regarding to the graphene-based films. To investigate the structure of the graphene-based films, scanning electron microscopy (SEM) and raman spectroscopy were carried out. Finally, LED demonstrators were built to illustrate the thermal performance of graphene-based film and the functional layers. IR camera recorded a 5°C lower temperature of a LED demonstrator with SHT G1000 as the binding layer instead of a commercial thermal conductive adhesive.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Chen, S., et al. (författare)
  • An overview of carbon nanotubes based interconnects for microelectronic packaging
  • 2017
  • Ingår i: 2017 IMAPS Nordic Conference on Microelectronics Packaging, NordPac 2017, Goteborg, Sweden, 18-20 June 2017. - 9781538630556 ; , s. 113-119
  • Konferensbidrag (refereegranskat)abstract
    • Owing to the great demand in more functions and miniaturization in microelectronic packaging, the dimensions of interconnects has decreased extremely, which has resulted in electrical, thermal, and mechanical reliability issues. To address these issues, carbon nanotube (CNT) has been selected as a promising alternative material for the interconnects in packaging due to its large current density, high thermal conductivity, great flexibility, and low coefficient of thermal expansion (CTE). In this paper, the development of CNTs based vertical interconnects was reviewed. However, the resistivity of CNTs based interconnects was much higher than that of copper interconnects. Thus, this review focused on the resistivity of CNTs-based interconnects in different fabrication process and pointed out what improves the resistivity. In the future, CNTs-Cu nanocomposite with unique properties could be the suitable material for bumps to reduce the resistivity of CNTs based bumps further.
  •  
6.
  • Daon, J., et al. (författare)
  • Chemically enhanced carbon nanotubes based Thermal Interface Materials
  • 2015
  • Ingår i: THERMINIC 2015 - 21st International Workshop on Thermal Investigations of ICs and Systems 2015. - 9781467397056
  • Konferensbidrag (refereegranskat)abstract
    • With progress in microelectronics the component density on a device increases drastically. As a consequence the power density reaches levels that challenge device reliability. New heat dissipation strategies are needed to efficiently drain heat. Thermal Interface Materials (TIMs) are usually used to transfer heat across interfaces, for example between a device and its packaging. Vertically Aligned Carbon Nanotubes (VACNTs) can be used to play this role. Indeed, carbon nanotubes are among the best thermal conductors (similar to 3.000 W/mK) and in the form of VACNT mats, show interesting mechanical properties. On one side, VACNTs are in contact with their growth substrate and there is a low thermal resistance. On the other side, good contact must be created between the opposite substrate and the VACNTs in order to decrease the contact thermal resistance. A thin-film deposition of an amorphous material can be used to play this role. This paper reports a chemically enhanced carbon nanotube based TIM with creation of chemical bonds between the polymer and VACNTs. We show that these covalent bonds enhance the thermal transfer from VACNTs to a copper substrate and can dramatically decrease local resistances. Implementation processes and thermal characterizations of TIMs are studied and reported.
  •  
7.
  • Daon, J., et al. (författare)
  • Electrically conductive thermal interface materials based on vertically aligned carbon nanotubes mats
  • 2014
  • Ingår i: IEEE 20th International Workshop on Thermal Investigation of ICs and Systems (Therminic). Greenwich, London, United Kingdom, 24-26 September 2014. - 9781479954155
  • Konferensbidrag (refereegranskat)abstract
    • In power microelectronics, the trends towards miniaturization and higher performances result in higher power densities and more heat to be dissipated. In most electronic assembly, thermal interface materials (TIM) help provide a path for heat dissipation but still represent a bottleneck in the total thermal resistance of the system. VA-CNTs mats are typically grown on HR silicon substrate with Al2O3 diffusion barrier layer using Thermal CVD process. In many cases, 'die attach' thermal interface materials need to be electrically conductive and the growth of dense VA-CNT mats on an electrically conductive substrate remains a challenge. This paper presents the growth of dense VA-CNT mats on doped silicon with Al2O3 and TiN diffusion barrier layer. Processes, thermal and electrical characterization of VA-CNTs based thermal interface materials are studied and reported.
  •  
8.
  • Darmawan, C. C., et al. (författare)
  • Graphene-CNT hybrid material as potential thermal solution in electronics applications
  • 2017
  • Ingår i: 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac). - 9781538630556 ; , s. 190-193
  • Konferensbidrag (refereegranskat)abstract
    • Graphene and CNT have great potential in electronics applications. This work explored the possibility of integrating 1D CNT and 2D graphene into a 3D covalently bonded structure, i.e. a graphene-CNT hybrid material for thermal management application. The graphene-CNT hybrid material was later investigated morphologically and thermally to observe its heat dissipation capability.
  •  
9.
  • Enmark, Markus, 1991, et al. (författare)
  • A Critical Assessment of Nano Enhanced Vapor Chamber Wick Structures for Electronics Cooling
  • 2021
  • Ingår i: 2021 23rd European Microelectronics and Packaging Conference and Exhibition, EMPC 2021.
  • Konferensbidrag (refereegranskat)abstract
    • The increasing need for high thermal dissipation in small electronic products puts tough requirements on effective cooling solutions. Two of the most effective passive cooling devices in electronics today are vapor chambers and heat pipes. With new advancements in materials science and nanotechnology comes the possibility to further increase cooling capacity and at the same time make devices lighter. This study is a critical assessment on recent progress in the field of nanomaterial enhanced wick structures in vapor chambers and heat pipes. In this paper, nano-enhanced wick structures are divided into five different sub-categories based on material type. Publication trends for the different types of nano-enhanced wicks are studied by plotting them on a timeline. It is found that nanostructured metal wicks is the most studied field in recent years. A plot showing wick performance in terms of superheat temperatures for given heat flux is created to be used for benchmarking of new wick structures when pool boil experiments are carried out. An attempt to find correlation between publication trends, type of wick and performance is done. On the basis of the gathered data it is deemed difficult to find a distinct correlation, this is mainly due to difficulty in comparing performance between different studies, especially when different heat fluxes are used. There is no unambiguous answer to which category of nano-enhanced wicks that should be target for future studies. Graphene coating and pure carbon nanomaterials such as aerogels and graphene foam are still relatively unexplored and believed to have great potential if they can be attached to envelope materials.
  •  
10.
  • Enmark, Markus, 1991, et al. (författare)
  • Reliability Characterization of Graphene Enhanced Thermal Interface Material for Electronics Cooling Applications
  • 2022
  • Ingår i: 2022 IMAPS Nordic Conference on Microelectronics Packaging, NordPac 2022.
  • Konferensbidrag (refereegranskat)abstract
    • Graphene-based products are gaining popularity in thermal management applications in high performance electronics systems. The ultra-high thermal conductivity of graphene together with its relatively low density makes it a suitable material for reaching high cooling capability in lightweight applications. An example of products that are starting to enter the market is graphene enhanced thermal interface materials (TIMs). Pristine graphene enhanced TIMs are well characterized and show high thermal conductivity and low thermal interface resistance. Before these TIMs can take the next step from being a niche product to reach high volume sales on the market, it needs to be proven that they have stable performance over time when conditioned and aged according to industry reliability standards. In this work, a set of customized test rigs was designed, and graphene enhanced TIMs of three different thicknesses were tested. The TIMs were compressed by 30% and then subjected to three different industry standard reliability tests; thermal aging, temperature cycling and damp heat. The thermal resistance was measured sequentially during each test to monitor change over time. The reliability tests are still ongoing and so far the tested graphene enhanced TIMs have stable performance over time with some observable trends for the different tests. At the current test time the maximum degradation in thermal resistance is 13%, measured after 511 cycles in the thermal cycling test. The used test method is deemed promising for reliability comparison and future requirement standardization on thermal pads.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 57

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy