SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fu Yifeng 1984) ;pers:(Li X.)"

Search: WFRF:(Fu Yifeng 1984) > Li X.

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fan, X., et al. (author)
  • Reliability of carbon nanotube bumps for chip on glass application
  • 2014
  • In: Proceedings of the 5th Electronics System-Integration Technology Conference, ESTC 2014. - 9781479940264 ; , s. Art. no. 6962753-
  • Conference paper (peer-reviewed)abstract
    • Carbon nanotubes (CNTs) are an ideal candidate material for electronic interconnects due to their extraordinary thermal, electrical and mechanical properties. In this study, densified CNT bumps utilizing the paper-mediated controlled method were applied as the interconnection for chip on glass (COG) applications, and the silicon chip with patterned CNT bumps was then flipped and bonded onto a glass substrate using anisotropic conductive adhesive (ACA) at a bonding pressure of 127.4 Mpa, 170°C for 8 seconds. The electrical properties of the COG were evaluated with the contact resistance of each bump measured using the four-point probe method. Three different structure traces, marked as Trace A, Trace B, and Trace C, were tested, respectively. Thermal cycling (-40 to 85°C, 800 cycles) and damp heat tests (85°C/85% RH, 1000 hours) were also conducted to evaluate the reliability of the CNT-COG structure. The average contact resistance of the samples was recorded during these tests, in which there was no obvious electrical failure observed after both the thermal cycling and damp heat tests. The results of these tests indicated that the COG has good reliability and the CNT bumps have promising potential applications in COG.
  •  
2.
  • Li, X., et al. (author)
  • Reliability of Carbon Nanotube Bumps for Chip on Film Application
  • 2013
  • In: Proceedings of the IEEE Conference on Nanotechnology. - 1944-9399 .- 1944-9380. - 9781479906758 ; , s. 845-848
  • Conference paper (peer-reviewed)abstract
    • Carbon nanotubes (CNTs) are an ideal candidate for electrical interconnects due to their extraordinary thermal, electrical and mechanical properties. In this work, as-densified CNT bumps were applied as chip on film (COF) interconnection material. A silicon chip with patterned CNT bumps was bonded onto a flexible substrate using anisotropic conductive adhesive (ACA) with bonding pressure, at 127.4 MPa, 170 °C and for 8 seconds. The electrical properties of this structure were evaluated by measuring the contact resistance of each bump using the four-point probe method. Thermal cycling (-40∼85°C, 1000 cycles) and damp heat tests (85°C/85% RH, 1000 hours) were conducted to evaluate the reliabilities of the CNT-COF structure bonded with ACA. The average contact resistances of two samples used for the reliability tests were 226 mΩ and 260mΩ. No electrical failure was observed after the damp heat test and only two were observed after the thermal cycling test. The average contact resistance was increased only 15.7% and 13.8%, respectively, after the thermal cycling and the damp heat tests. © 2013 IEEE.
  •  
3.
  • Sun, Jie, 1977, et al. (author)
  • Synthesis Methods of Two-Dimensional MoS2: A Brief Review
  • 2017
  • In: Crystals. - : MDPI AG. - 2073-4352. ; 7:7, s. Article no 198 -
  • Research review (peer-reviewed)abstract
    • Molybdenum disulfide (MoS2) is one of the most important two-dimensional materials after graphene. Monolayer MoS2 has a direct bandgap (1.9 eV) and is potentially suitable for post-silicon electronics. Among all atomically thin semiconductors, MoS2's synthesis techniques are more developed. Here, we review the recent developments in the synthesis of hexagonal MoS2, where they are categorized into top-down and bottom-up approaches. Micromechanical exfoliation is convenient for beginners and basic research. Liquid phase exfoliation and solutions for chemical processes are cheap and suitable for large-scale production; yielding materials mostly in powders with different shapes, sizes and layer numbers. MoS2 films on a substrate targeting high-end nanoelectronic applications can be produced by chemical vapor deposition, compatible with the semiconductor industry. Usually, metal catalysts are unnecessary. Unlike graphene, the transfer of atomic layers is omitted. We especially emphasize the recent advances in metalorganic chemical vapor deposition and atomic layer deposition, where gaseous precursors are used. These processes grow MoS2 with the smallest building-blocks, naturally promising higher quality and controllability. Most likely, this will be an important direction in the field. Nevertheless, today none of those methods reproducibly produces MoS2 with competitive quality. There is a long way to go for MoS2 in real-life electronic device applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view