SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gõmez Elvira Javier) ;pers:(Zorzano María Paz)"

Sökning: WFRF:(Gõmez Elvira Javier) > Zorzano María Paz

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gõmez-Elvira, Javier, et al. (författare)
  • Curiosity's rover environmental monitoring station : Overview of the first 100 sols
  • 2014
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 119:7, s. 1680-1688
  • Tidskriftsartikel (refereegranskat)abstract
    • In the first 100 Martian solar days (sols) of the Mars Science Laboratory mission, the Rover Environmental Monitoring Station (REMS) measured the seasonally evolving diurnal cycles of ultraviolet radiation, atmospheric pressure, air temperature, ground temperature, relative humidity, and wind within Gale Crater on Mars. As an introduction to several REMS-based articles in this issue, we provide an overview of the design and performance of the REMS sensors and discuss our approach to mitigating some of the difficulties we encountered following landing, including the loss of one of the two wind sensors. We discuss the REMS data set in the context of other Mars Science Laboratory instruments and observations and describe how an enhanced observing strategy greatly increased the amount of REMS data returned in the first 100 sols, providing complete coverage of the diurnal cycle every 4 to 6 sols. Finally, we provide a brief overview of key science results from the first 100 sols. We found Gale to be very dry, never reaching saturation relative humidities, subject to larger diurnal surface pressure variations than seen by any previous lander on Mars, air temperatures consistent with model predictions and abundant short timescale variability, and surface temperatures responsive to changes in surface properties and suggestive of subsurface layering. Key Points Introduction to the REMS results on MSL mission Overiview of the sensor information Overview of operational constraints
  •  
2.
  •  
3.
  • Gómez-Elvira, J., et al. (författare)
  • REMS : The environmental sensor suite for the Mars Science Laboratory rover
  • 2012
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 170:1-4, s. 583-640
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rover Environmental Monitoring Station (REMS) will investigate environmental factors directly tied to current habitability at the Martian surface during the Mars Science Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Accordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures. © 2012 Springer Science+Business Media B.V.
  •  
4.
  • Hamilton, Victoria E., et al. (författare)
  • Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater
  • 2014
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 119:4, s. 745-770
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe preliminary results from the first 100 sols of ground temperature measurements along the Mars Science Laboratory's traverse from Bradbury Landing to Rocknest in Gale. The ground temperature data show long-term increases in mean temperature that are consistent with seasonal evolution. Deviations from expected temperature trends within the diurnal cycle are observed and may be attributed to rover and environmental effects. Fits to measured diurnal temperature amplitudes using a thermal model suggest that the observed surfaces have thermal inertias in the range of 265-375?J m-2 K-1 s-1/2, which are within the range of values determined from orbital measurements and are consistent with the inertias predicted from the observed particle sizes on the uppermost surface near the rover. Ground temperatures at Gale Crater appear to warm earlier and cool later than predicted by the model, suggesting that there are multiple unaccounted for physical conditions or processes in our models. Where the Mars Science Laboratory (MSL) descent engines removed a mobile layer of dust and fine sediments from over rockier material, the diurnal temperature profile is closer to that expected for a homogeneous surface, suggesting that the mobile materials on the uppermost surface may be partially responsible for the mismatch between observed temperatures and those predicted for materials having a single thermal inertia. Models of local stratigraphy also implicate thermophysical heterogeneity at the uppermost surface as a potential contributor to the observed diurnal temperature cycle. Key Points Diurnal ground temperatures vary with location Diurnal temperature curves are not well matched by a homogeneous thermal model GTS data are consistent with a varied stratigraphy and thermophysical properties.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy