SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaborieau Valérie) "

Sökning: WFRF:(Gaborieau Valérie)

  • Resultat 1-10 av 26
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bojesen, Stig E., et al. (författare)
  • Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer
  • 2013
  • Ingår i: Nature Genetics. - New york : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 45:4, s. 371-384
  • Tidskriftsartikel (refereegranskat)abstract
    • TERT-locus SNPs and leukocyte telomere measures are reportedly associated with risks of multiple cancers. Using the Illumina custom genotyping array iCOG, we analyzed similar to 480 SNPs at the TERT locus in breast (n = 103,991), ovarian (n = 39,774) and BRCA1 mutation carrier (n = 11,705) cancer cases and controls. Leukocyte telomere measurements were also available for 53,724 participants. Most associations cluster into three independent peaks. The minor allele at the peak 1 SNP rs2736108 associates with longer telomeres (P = 5.8 x 10(-7)), lower risks for estrogen receptor (ER)-negative (P = 1.0 x 10(-8)) and BRCA1 mutation carrier (P = 1.1 x 10(-5)) breast cancers and altered promoter assay signal. The minor allele at the peak 2 SNP rs7705526 associates with longer telomeres (P = 2.3 x 10(-14)), higher risk of low-malignant-potential ovarian cancer (P = 1.3 x 10(-15)) and greater promoter activity. The minor alleles at the peak 3 SNPs rs10069690 and rs2242652 increase ER-negative (P = 1.2 x 10(-12)) and BRCA1 mutation carrier (P = 1.6 x 10-14) breast and invasive ovarian (P = 1.3 x 10(-11)) cancer risks but not via altered telomere length. The cancer risk alleles of rs2242652 and rs10069690, respectively, increase silencing and generate a truncated TERT splice variant.
  •  
2.
  • Michailidou, Kyriaki, et al. (författare)
  • Association analysis identifies 65 new breast cancer risk loci.
  • 2017
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 551:7678, s. 92-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.
  •  
3.
  • Delahaye-Sourdeix, Manon, et al. (författare)
  • A Novel Risk Locus at 6p21.3 for Epstein-Barr Virus-Positive Hodgkin Lymphoma
  • 2015
  • Ingår i: ; 24:12, s. 1838-1843
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A proportion of the genetic variants involved in susceptibility to Hodgkin lymphoma differ by the tumor's Epstein-Barr virus (EBV) status, particularly within the MHC region.METHODS: We have conducted an SNP imputation study of the MHC region, considering tumor EBV status in 1,200 classical Hodgkin lymphoma (cHL) cases and 5,726 control subjects of European origin. Notable findings were genotyped in an independent study population of 468 cHL cases and 551 controls.RESULTS: We identified and subsequently replicated a novel association between a common genetic variant rs6457715 and cHL. Although strongly associated with EBV-positive cHL [OR, 2.33; 95% confidence interval (CI), 1.83-2.97; P = 7 × 10(-12)], there was little evidence for association between rs6457715 and the EBV-negative subgroup of cHL (OR, 1.06; 95% CI, 0.92-1.21), indicating that this association was specific to the EBV-positive subgroup (Phet < P = 10(-8)). Furthermore, the association was limited to EBV-positive cHL subgroups within mixed cell (MCHL) and nodular sclerosis subtypes (NSHL), suggesting that the association is independent of histologic subtype of cHL.CONCLUSIONS: rs6457715, located near the HLA-DPB1 gene, is associated with EBV-positive cHL and suggests this region as a novel susceptibility locus for cHL.IMPACT: This expands the number of genetic variants that are associated with cHL and provides additional evidence for a critical and specific role of EBV in the etiology of this disease. Cancer Epidemiol Biomarkers Prev; 24(12); 1838-43.
  •  
4.
  • Johansson, Mattias, et al. (författare)
  • The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study
  • 2019
  • Ingår i: ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation.Methods and findings: Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44–1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40–1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44–1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30–2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11–1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84–1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose.Conclusions: This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk.
  •  
5.
  • Johnson, Nichola, et al. (författare)
  • Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study
  • 2014
  • Ingår i: Breast Cancer Research. - : BioMed Central (BMC). - 1465-5411. ; 16:3, s. R51-
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age <= 50 years. Methods: We further investigated the association of rs10235235 with breast cancer risk in a large case control study of 47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics. Results: We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (P-trend = 0.02). There was no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche in controls (P-trend = 0.005) but not cases (P-trend = 0.97). Consequently the association between rs10235235 and breast cancer risk differed according to age at menarche (P-het = 0.02); the rare allele of rs10235235 was associated with a reduction in breast cancer risk for women who had their menarche age >= 15 years (ORhet = 0.84, 95% CI 0.75, 0.94; ORhom = 0.81, 95% CI 0.51, 1.30; P-trend = 0.002) but not for those who had their menarche age <= 11 years (ORhet = 1.06, 95% CI 0.95, 1.19, ORhom = 1.07, 95% CI 0.67, 1.72; P-trend = 0.29). Conclusions: To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels.
  •  
6.
  • Laskar, Ruhina S, et al. (författare)
  • Sex specific associations in genome wide association analysis of renal cell carcinoma.
  • 2019
  • Ingår i: ; 27:10, s. 1589-1598
  • Tidskriftsartikel (refereegranskat)abstract
    • Renal cell carcinoma (RCC) has an undisputed genetic component and a stable 2:1 male to female sex ratio in its incidence across populations, suggesting possible sexual dimorphism in its genetic susceptibility. We conducted the first sex-specific genome-wide association analysis of RCC for men (3227 cases, 4916 controls) and women (1992 cases, 3095 controls) of European ancestry from two RCC genome-wide scans and replicated the top findings using an additional series of men (2261 cases, 5852 controls) and women (1399 cases, 1575 controls) from two independent cohorts of European origin. Our study confirmed sex-specific associations for two known RCC risk loci at 14q24.2 (DPF3) and 2p21(EPAS1). We also identified two additional suggestive male-specific loci at 6q24.3 (SAMD5, male odds ratio (ORmale) = 0.83 [95% CI = 0.78-0.89], Pmale = 1.71 × 10-8 compared with female odds ratio (ORfemale) = 0.98 [95% CI = 0.90-1.07], Pfemale = 0.68) and 12q23.3 (intergenic, ORmale = 0.75 [95% CI = 0.68-0.83], Pmale = 1.59 × 10-8 compared with ORfemale = 0.93 [95% CI = 0.82-1.06], Pfemale = 0.21) that attained genome-wide significance in the joint meta-analysis. Herein, we provide evidence of sex-specific associations in RCC genetic susceptibility and advocate the necessity of larger genetic and genomic studies to unravel the endogenous causes of sex bias in sexually dimorphic traits and diseases like RCC.
  •  
7.
  •  
8.
  • Machiela, Mitchell J., et al. (författare)
  • Genetic Variants Related to Longer Telomere Length are Associated with Increased Risk of Renal Cell Carcinoma
  • 2017
  • Ingår i: European Urology. - : Elsevier. - 0302-2838 .- 1873-7560. ; 72:5, s. 747-754
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings.Objective: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations.Design, setting, and participants: Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length.Outcome measurements and statistical analysis: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis.Results and limitations: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR = 2.07 per predicted kilobase increase, 95% confidence interval [CI]: = 1.70-2.53, p < 0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R-2 > 0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR = 1.73, 95% CI = 1.36-2.21, p < 0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N = 5573, OR = 1.93, 95% CI = 1.50-2.49, p < 0.0001), papillary (N = 573, OR = 1.96, 95% CI = 1.01-3.81, p = 0.046), and chromophobe RCC (N = 203, OR = 2.37, 95% CI = 0.78-7.17, p = 0.13).Conclusions: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk.Patient summary: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma.
  •  
9.
  • Meyer, Kerstin B., et al. (författare)
  • Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1
  • 2013
  • Ingår i: American Journal of Human Genetics. - : Cell Press. - 0002-9297 .- 1537-6605. ; 93:6, s. 1046-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ER alpha to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease.
  •  
10.
  • Michailidou, Kyriaki, et al. (författare)
  • Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer
  • 2015
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 47:4, s. 373-U127
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 x 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
  • [1]23Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy