SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gabrielson Marike) "

Sökning: WFRF:(Gabrielson Marike)

  • Resultat 1-10 av 24
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Byström, Sanna, et al. (författare)
  • Affinity proteomic profiling of plasma for proteins associated to area-based mammographic breast density
  • 2018
  • Ingår i: ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mammographic breast density is one of the strongest risk factors for breast cancer, but molecular understanding of how breast density relates to cancer risk is less complete. Studies of proteins in blood plasma, possibly associated with mammographic density, are well-suited as these allow large-scale analyses and might shed light on the association between breast cancer and breast density. Methods: Plasma samples from 1329 women in the Swedish KARMA project, without prior history of breast cancer, were profiled with antibody suspension bead array (SBA) assays. Two sample sets comprising 729 and 600 women were screened by two different SBAs targeting a total number of 357 proteins. Protein targets were selected through searching the literature, for either being related to breast cancer or for being linked to the extracellular matrix. Association between proteins and absolute area-based breast density (AD) was assessed by quantile regression, adjusting for age and body mass index (BMI). Results: Plasma profiling revealed linear association between 20 proteins and AD, concordant in the two sets of samples (p < 0.05). Plasma levels of seven proteins were positively associated and 13 proteins negatively associated with AD. For eleven of these proteins evidence for gene expression in breast tissue existed. Among these, ABCC11, TNFRSF10D, F11R and ERRF were positively associated with AD, and SHC1, CFLAR, ACOX2, ITGB6, RASSF1, FANCD2 and IRX5 were negatively associated with AD. Conclusions: Screening proteins in plasma indicates associations between breast density and processes of tissue homeostasis, DNA repair, cancer development and/or progression in breast cancer. Further validation and follow-up studies of the shortlisted protein candidates in independent cohorts will be needed to infer their role in breast density and its progression in premenopausal and postmenopausal women.
  •  
2.
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
  •  
3.
  • Dörk, Thilo, et al. (författare)
  • Two truncating variants in FANCC and breast cancer risk
  • 2019
  • Ingår i: ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95% CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
  •  
4.
  • Escala-Garcia, Maria, et al. (författare)
  • Genome-wide association study of germline variants and breast cancer-specific mortality
  • 2019
  • Ingår i: ; 120:6, s. 647-657
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using similar to 10.4 million variants for 96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true positive using the Bayesian false discovery probability (BFDP). RESULTS: We did not find any variant associated with breast cancer-specific mortality at P<5 x 10(-8). For ER-positive disease, the most significantly associated variant was chr7:rs4717568 (BFDP = 7%, P = 1.28 x 10(-7), hazard ratio [HR] = 0.88, 95% confidence interval [ CI] = 0.84-0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7: rs67918676 (BFDP = 11%, P = 1.38 x 10(-7), HR = 1.27, 95% CI = 1.16-1.39); located within a long intergenic non-coding RNA gene (AC004009.3), close to the HOXA gene cluster. CONCLUSIONS: We uncovered germline variants on chromosome 7 at BFDP <15% close to genes for which there is biological evidence related to breast cancer outcome. However, the paucity of variants associated with mortality at genome-wide significance underpins the challenge in providing genetic-based individualised prognostic information for breast cancer patients.
  •  
5.
  • Gabrielson, Marike, et al. (författare)
  • Altered PPARγ coactivator-1 alpha expression in abdominal aortic aneurysm : Possible effects on mitochondrial biogenesis
  • 2016
  • Ingår i: Journal of Vascular Research. - : S. Karger. - 1018-1172 .- 1423-0135. ; 53:1-2, s. 17-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Abdominal aortic aneurysm (AAA) is a complex and deadly vascular disorder. The pathogenesis of AAA includes destruction and phenotypic alterations of the vascular smooth muscle cells (VSMCs) and aortic tissues. PPARγ coactivator-1 alpha (PGC1α) regulates VSMC migration and matrix formation and is a major inducer of mitochondrial biogenesis and function, including oxidative metabolism. Methods: Protein and gene expression of PGC1α and markers for mitochondria biogenesis and cell type-specificity were analysed in AAA aortas from humans and mice and compared against control aortas. Results: Gene expression of PPARGC1A was decreased in human AAA and angiotensin (Ang) II-induced AAA in mice when compared to control vessels. However, high expression of PGC1α was detected in regions of neovascularisation in the adventitia layer. In contrast, the intima/media layer of AAA vessel exhibited defective mitochondrial biogenesis as indicated by low expression of PPARGC1A, VDAC, ATP synthase and citrate synthase. Conclusion: Our results suggest that mitochondrial biogenesis is impaired in AAA in synthetic SMCs in the media, with the exception of newly formed supporting vessels in the adventitia where the mitochondrial markers seem to be intact. To our knowledge, this is the first study investigating PGC1α and mitochondria biogenesis in AAA.
  •  
6.
  • Gabrielson, Marike, et al. (författare)
  • Amount of stroma is associated with mammographic density and stromal expression of oestrogen receptor in normal breast tissues
  • Ingår i: Breast Cancer Research and Treatment. - : Springer. - 0167-6806 .- 1573-7217. ; 158:2, s. 253-261
  • Tidskriftsartikel (refereegranskat)abstract
    • Following female sex and age, mammographic density is considered one of the strongest risk factors for breast cancer. Despite the association between mammographic density and breast cancer risk, little is known about the underlying histology and biological basis of breast density. To better understand the mechanisms behind mammographic density we assessed morphology, proliferation and hormone receptor status in relation to mammographic density in breast tissues from healthy women. Tissues were obtained from 2012–2013 by ultrasound-guided core needle biopsy from 160 women as part of the Karma (Karolinska mammography project for risk prediction for breast cancer) project. Mammograms were collected through routine mammography screening and mammographic density was calculated using STRATUS. The histological composition, epithelial and stromal proliferation status and hormone receptor status were assessed through immunohistochemical staining. Higher mammographic density was significantly associated with a greater proportion of stromal and epithelial tissue and a lower proportion of adipose tissue. Epithelial expression levels of Ki-67, oestrogen receptor (ER) and progesterone receptor (PR) were not associated with mammographic density. Epithelial Ki-67 was associated with a greater proportion of epithelial tissue, and epithelial PR was associated with a greater proportion of stromal and a lower proportion of adipose tissue. Epithelial ER was not associated with any tissues. In contrast, expression of ER in the stroma was significantly associated with a greater proportion of stroma, and negatively associated with the amount of adipose tissue. High mammographic density is associated with higher amount of stroma and epithelium and less amount of fat, but is not associated with a change in epithelial proliferation or receptor status. Increased expressions of both epithelial PR and stromal ER are associated with a greater proportion of stroma, suggesting hormonal involvement in regulating breast tissue composition.
  •  
7.
  •  
8.
  • Gabrielson, Marike, et al. (författare)
  • Hormonal determinants of mammographic density and density change
  • 2020
  • Ingår i: ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Mammographic density (MD) is a strong risk factor for breast cancer. We examined how endogenous plasma hormones are associated with average MD area (cm(2)) and annual MD change (cm(2)/year). Methods This study within the prospective KARMA cohort included analyses of plasma hormones of 1040 women. Hormones from the progestogen (n = 3), androgen (n = 7), oestrogen (n = 2) and corticoid (n = 5) pathways were analysed by ultra-performance supercritical fluid chromatography-tandem mass spectrometry (UPSFC-MS/MS), as well as peptide hormones and proteins (n = 2). MD was measured as a dense area using the STRATUS method (mean over the left and right breasts) and mean annual MD change over time. Results Greater baseline mean MD was associated with overall higher concentrations of progesterone (average + 1.29 cm(2)per doubling of hormone concentration), 17OH-progesterone (+ 1.09 cm(2)), oesterone sulphate (+ 1.42 cm(2)), prolactin (+ 2.11 cm(2)) and SHBG (+ 4.18 cm(2)), and inversely associated with 11-deoxycortisol (- 1.33 cm(2)). The association between MD and progesterone was confined to the premenopausal women only. The overall annual MD change was - 0.8 cm(2). Hormones from the androgen pathway were statistically significantly associated with MD change. The annual MD change was - 0.96 cm(2)and - 1.16 cm(2)lesser, for women in the highest quartile concentrations of testosterone and free testosterone, respectively, compared to those with the lowest concentrations. Conclusions Our results suggest that, whereas hormones from the progestogen, oestrogen and corticoid pathways drive baseline MD, MD change over time is mainly driven by androgens. This study emphasises the complexity of risk factors for breast cancer and their mechanisms of action.
  •  
9.
  • Gabrielson, Marike, et al. (författare)
  • Inclusion of Endogenous Plasma Dehydroepiandrosterone Sulfate and Mammographic Density in Risk Prediction Models for Breast Cancer
  • 2020
  • Ingår i: ; 29:3, s. 574-581
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Endogenous hormones and mammographic density are risk factors for breast cancer. Joint analyses of the two may improve the ability to identify high-risk women.Methods: This study within the KARMA cohort included pre-diagnostic measures of plasma hormone levels of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), and mammographic density in 629 cases and 1,223 controls, not using menopausal hormones. We evaluated the area under the receiver-operating curve (AUC) for risk of breast cancer by adding DHEA, DHEAS, and mammographic density to the Gail or Tyrer-Cuzick 5-year risk scores or the CAD2Y 2-year risk score.Results: DHEAS and percentage density were independently and positively associated with breast cancer risk (P = 0.007 and P < 0.001, respectively) for postmenopausal, but not premenopausal, women. No significant association was seen for DHEA. In postmenopausal women, those in the highest tertiles of both DHEAS and density were at greatest risk of breast cancer (OR, 3.5; 95% confidence interval, 1.9-6.3) compared with the lowest tertiles. Adding DHEAS significantly improved the AUC for the Gail (+2.1 units, P = 0.008) and Tyrer-Cuzick (+1.3 units, P = 0.007) risk models. Adding DHEAS to the Gail and Tyrer-Cuzick models already including mammographic density further increased the AUC by 1.2 units (P = 0.006) and 0.4 units (P = 0.007), respectively, compared with only including density.Conclusions: DHEAS and mammographic density are independent risk factors for breast cancer and improve risk discrimination for postmenopausal breast cancer.Impact: Combining DHEAS and mammographic density could help identify women at high risk who may benefit from individualized breast cancer screening and/or preventive measures among postmenopausal women.
  •  
10.
  • Gabrielson, Marike, et al. (författare)
  • Inclusion of Plasma Prolactin Levels in Current Risk Prediction Models of Premenopausal and Postmenopausal Breast Cancer
  • 2018
  • Ingår i: ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Circulating plasma prolactin is associated with breast cancer risk and may improve our ability to identify high-risk women. Mammographic density is a strong risk factor for breast cancer, but the association with prolactin is unclear. We studied the association between breast cancer, established breast cancer risk factors and plasma prolactin, and improvement of risk prediction by adding prolactin. Methods: We conducted a nested case-control study including 721 breast cancer patients and 1400 age-matched controls. Plasma prolactin levels were assayed using immunoassay and mammographic density measured by STRATUS. Odds ratios (ORs) were calculated by multivariable adjusted logistic regression, and improvement in the area under the curve for the risk of breast cancer by adding prolactin to established risk models. Statistical tests were two-sided. Results: In multivariable adjusted analyses, prolactin was associated with risk of premenopausal (OR, top vs bottom quintile = 1.9; 1.88 (95% confidence interval [CI] = 1.08 to 3.26) but not with postmenopausal breast cancer. In postmenopausal cases prolactin increased by 10.6% per cBIRADS category (P-trend = .03). In combined analyses of prolactin and mammographic density, ORs for women in the highest vs lowest tertile of both was 3.2 (95% CI = 1.3 to 7.7) for premenopausal women and 2.44 (95% CI = 1.44 to 4.14) for postmenopausal women. Adding prolactin to current risk models improved the area under the curve of the Gail model (+2.4 units, P = .02), Tyrer-Cuzick model (+3.8, P = .02), and the CAD2Y model (+1.7, P = .008) in premenopausal women. Conclusion: Circulating plasma prolactin and mammographic density appear independently associated with breast cancer risk among premenopausal women, and prolactin may improve risk prediction by current risk models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
  • [1]23Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy