SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaigalas Gediminas) ;lar1:(lu)"

Sökning: WFRF:(Gaigalas Gediminas) > Lunds universitet

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fischer, Charlotte Froese, et al. (författare)
  • Advanced multiconfiguration methods for complex atoms : I. Energies and wave functions
  • 2016
  • Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 49:18
  • Forskningsöversikt (refereegranskat)abstract
    • Multiconfiguration wave function expansions combined with configuration interaction methods are a method of choice for complex atoms where atomic state functions are expanded in a basis of configuration state functions. Combined with a variational method such as the multiconfiguration Hartree-Fock (MCHF) or multiconfiguration Dirac-Hartree-Fock (MCDHF), the associated set of radial functions can be optimized for the levels of interest. The present review updates the variational MCHF theory to include MCDHF, describes the multireference single and double process for generating expansions and the systematic procedure of a computational scheme for monitoring convergence. It focuses on the calculations of energies and wave functions from which other atomic properties can be predicted such as transition rates, hyperfine structures and isotope shifts, for example.
  •  
2.
  • Jönsson, Per, et al. (författare)
  • An Introduction to Relativistic Theory as Implemented in GRASP
  • 2023
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Computational atomic physics continues to play a crucial role in both increasing the understanding of fundamental physics (e.g., quantum electrodynamics and correlation) and producing atomic data for interpreting observations from large-scale research facilities ranging from fusion reactors to high-power laser systems, space-based telescopes and isotope separators. A number of different computational methods, each with their own strengths and weaknesses, is available to meet these tasks. Here, we review the relativistic multiconfiguration method as it applies to the General Relativistic Atomic Structure Package [grasp2018, C. Froese Fischer, G. Gaigalas, P. Jonsson, J. Bieron, Comput. Phys. Commun. (2018). DOI: 10.1016/j.cpc.2018.10.032]. To illustrate the capacity of the package, examples of calculations of relevance for nuclear physics and astrophysics are presented.
  •  
3.
  • Jönsson, Per, et al. (författare)
  • GRASP Manual for Users
  • 2023
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • grasp is a software package in Fortran 95, adapted to run in parallel under MPI, for research in atomic physics. The basic premise is that, given a wave function, any observed atomic property can be computed. Thus, the first step is always to determine a wave function. Different properties challenge the accuracy of the wave function in different ways. This software is distributed under the MIT Licence.
  •  
4.
  • Jönsson, Per, et al. (författare)
  • Multiconfiguration Dirac-Hartree-Fock Calculations with Spectroscopic Accuracy : Applications to Astrophysics
  • 2017
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 5:2
  • Forskningsöversikt (refereegranskat)abstract
    • Atomic data, such as wavelengths, spectroscopic labels, broadening parameters and transition rates, are necessary for many applications, especially in plasma diagnostics, and for interpreting the spectra of distant astrophysical objects. The experiment with its limited resources is unlikely to ever be able to provide a complete dataset on any atomic system. Instead, the bulk of the data must be calculated. Based on fundamental principles and well-justified approximations, theoretical atomic physics derives and implements algorithms and computational procedures that yield the desired data. We review progress and recent developments in fully-relativistic multiconfiguration Dirac-Hartree-Fock methods and show how large-scale calculations can give transition energies of spectroscopic accuracy, i.e., with an accuracy comparable to the one obtained from observations, as well as transition rates with estimated uncertainties of a few percent for a broad range of ions. Finally, we discuss further developments and challenges.
  •  
5.
  • Li, Jiguang, et al. (författare)
  • Effects of the electron correlation and Breit and hyperfine interactions on the lifetime of the 2p53s states in neutral neon
  • 2012
  • Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics. - : Americal Physical Society. - 1050-2947 .- 1094-1622. ; 86:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In the framework of the multiconfiguration Dirac-Hartree-Fock method, we investigate the transition properties of four excited states in the 2p53s configuration of neutral neon. The electron correlation effects are taken into account systematically by using the active space approach. The effect of higher-order correlation on fine structures is shown. We also study the influence of the Breit interaction and find that it reduces the oscillator strength of the 3 P1o-1 S0 transition by 17%. It turns out that the inclusion of the Breit interaction is essential even for such a light atomic system. Our ab initio calculated line strengths, oscillator strengths, and transition rates are compared with other theoretical values and experimental measurements. Good agreement is found except for the 3 P2o-1 S0 M2 transition for which discrepancies of around 15% between theories and experiments remain. In addition, the impact of hyperfine interactions on the lifetimes of the 3 P0o and 3 P2o metastable states is investigated for the 21Ne isotope (I=3/2). We find that hyperfine interactions reduce the lifetimes drastically. For the 3 P0o state the lifetime is decreased by a factor of 630.
  •  
6.
  • Papoulia, Asimina, et al. (författare)
  • Ab initio electronic factors of the A and B hyperfine structure constants for the 5s25p6s1,3P01 states in Sn I
  • 2021
  • Ingår i: Physical Review A. - 2469-9926. ; 103:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale ab initio calculations of the electronic contribution to the electric quadrupole hyperfine constant B were performed for the 5s25p6s1,3Po1 excited states of neutral tin. To probe the sensitivity of B to different electron correlation effects, three sets of variational multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction calculations employing different strategies were carried out. In addition, a fourth set of calculations was based on the configuration interaction Dirac-Fock-Sturm theory. For the 5s25p6s 1Po1 state, the final value of B/Q=703(50) MHz/b differs by 0.4% from the one recently used by Yordanov et al. [Commun. Phys. 3, 107 (2020)] to extract the nuclear quadrupole moments Q for tin isotopes in the range 117−131Sn from collinear laser spectroscopy measurements. Efforts were made to provide a realistic theoretical uncertainty for the final B/Q value of the 5s25p6s 1Po1 state based on statistical principles and on correlation with the electronic contribution to the magnetic dipole hyperfine constant A.
  •  
7.
  • Papoulia, Asimina, et al. (författare)
  • Coulomb (Velocity) Gauge Recommended in Multiconfiguration Calculations of Transition Data Involving Rydberg Series
  • 2019
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Astronomical spectroscopy has recently expanded into the near-infrared (nIR) wavelength region, raising the demands on atomic transition data. The interpretation of the observed spectra largely relies on theoretical results, and progress towards the production of accurate theoretical data must continuously be made. Spectrum calculations that target multiple atomic states at the same time are by no means trivial. Further, numerous atomic systems involve Rydberg series, which are associated with additional difficulties. In this work, we demonstrate how the challenges in the computations of Rydberg series can be handled in large-scale multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction (RCI) calculations. By paying special attention to the construction of the radial orbital basis that builds the atomic state functions, transition data that are weakly sensitive to the choice of gauge can be obtained. Additionally, we show that the Babushkin gauge should not always be considered as the preferred gauge, and that, in the computations of transition data involving Rydberg series, the Coulomb gauge could be more appropriate for the analysis of astrophysical spectra. To illustrate the above, results from computations of transitions involving Rydberg series in the astrophysically important C IV and C III ions are presented and analyzed.
  •  
8.
  •  
9.
  • Yordanov, Deyan T., et al. (författare)
  • Structural trends in atomic nuclei from laser spectroscopy of tin
  • 2020
  • Ingår i: Communications Physics. - : Springer Nature. - 2399-3650. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tin is the chemical element with the largest number of stable isotopes. Its complete proton shell, comparable with the closed electron shells in the chemically inert noble gases, is not a mere precursor to extended stability; since the protons carry the nuclear charge, their spatial arrangement also drives the nuclear electromagnetism. We report high-precision measurements of the electromagnetic moments and isomeric differences in charge radii between the lowest 1/2(+), 3/2(+), and 11/2(-) states in Sn117-131, obtained by collinear laser spectroscopy. Supported by state-of-the-art atomic-structure calculations, the data accurately show a considerable attenuation of the quadrupole moments in the closed-shell tin isotopes relative to those of cadmium, with two protons less. Linear and quadratic mass-dependent trends are observed. While microscopic density functional theory explains the global behaviour of the measured quantities, interpretation of the local patterns demands higher-fidelity modelling. Measurements of the hyperfine structure of chemical elements isotopes provide unique insight into the atomic nucleus in a nuclear model-independent way. The authors present collinear laser spectroscopy data obtained at the CERN ISOLDE and measure hyperfine splitting along a long chain of odd-mass tin isotopes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy