SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaigalas Gediminas) ;pers:(Rynkun Pavel)"

Sökning: WFRF:(Gaigalas Gediminas) > Rynkun Pavel

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Froese Fischer, Charlotte, et al. (författare)
  • Doublet-quartet energy separation in boron : a partitioned-correlationfunction- interaction method
  • 2013
  • Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics. - : American Physical Society. - 1050-2947 .- 1094-1622. ; 88:6
  • Tidskriftsartikel (refereegranskat)abstract
    • No lines have been observed for transitions between the doublet and quartet levels of B I. Consequently, energy levels based on observation for the latter are obtained through extrapolation of wavelengths along the isoelectronic sequence for the 2s22p 2Po 3/2 – 2s2p2 4P5/2 transition. In this paper, accurate theoretical excitation energies from a partitioned-correlation-function-interaction (PCFI) method are reported for B I that include both relativistic effects in the Breit-Pauli approximation and a finite mass correction. Results are compared with extrapolated values from observed data. For B I our estimate of the excitation energy 28 959 ± 5 cm−1 is in better agreement with the values obtained by Edl´en et al. (1969) than those reported by Kramida and Ryabtsev (2007). Our method is validated by applying the same procedure to the separation of these levels in C II.
  •  
2.
  • Gaidamauskas, Erikas, et al. (författare)
  • Tensorial form and matrix elements of the relativistic nuclear recoil operator
  • 2011
  • Ingår i: Journal of Physics B. - : IOP Publishing Ltd. - 0953-4075 .- 1361-6455. ; 44:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the lowest-order relativistic approximation (∼v2/c2) and to first order in me/M, the tensorial form of the relativistic corrections of the nuclear recoil Hamiltonian is derived, opening interesting perspectives for calculating isotope shifts in the multiconfiguration Dirac–Hartree–Fock framework. Their calculation is illustrated for selected Li-, B- and C-like ions. This work underlines the fact that the relativistic corrections to the nuclear recoil are definitively necessary for obtaining reliable isotope shift values.
  •  
3.
  • Gaigalas, Gediminas, et al. (författare)
  • Energy Level Structure and Transition Data of Er2
  • 2020
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 248:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A majority of Er in the universe is synthesized by the r-process, which can occur in the mergers of neutron stars (NSs). The contribution of this element to the opacity of NS ejecta should be tested, but even the energy levels of first excited configuration have not been fully presented. The main aim of this paper is to present accurate energy levels of the ground [Xe]4f(12) and first excited [Xe]4f(11)5d configurations of Er2+. The energy level structure of the Er2+ ion was computed using the multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction (RCI) methods, as implemented in the GRASP2018 program package. The Breit interaction, self-energy, and vacuum polarization corrections were included in the RCI computations. The zero-first-order approach was used in the computations. Energy levels with the identification in LS coupling for all (399) states belonging to the [Xe]4f(12) and [Xe]4f(11)5d configurations are presented. Electric dipole (E1) transition data between the levels of these two configurations are computed. The accuracy of these data is evaluated by studying the behavior of the transition rates as functions of the gauge parameter, as well as by evaluating the cancellation factors. The core electron correlations were studied using different strategies. The rms deviations obtained in this study for states of the ground and excited configurations from the available experimental data are 649 and 754 cm(-1), respectively.
  •  
4.
  • Gaigalas, Gediminas, et al. (författare)
  • Energy level structure of Er3+ free ion and Er3+ ion in Er2O3 crystal
  • 2014
  • Ingår i: National Institute for Fusion Science, Research Report NIFS-DATA. - : National Institute for Fusion Science. - 0915-6364. ; :115, s. 1-25
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The latest version of the GRASP2K atomic structure package [P. J¨onsson, G. Gaigalas, J. Biero´n, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 184 (2013) 2197], based on the multiconfigurational Dirac-Hartree-Fock method, is extended to account for effects of crystal fields in complex systems. Energies from relativistic configuration interaction calculations are reported for the Er3+ free ion. E2 and M1 line strengths, weighted oscillator strengths, and rates are presented for transitions between states of the [Xe]4f11 configuration. Also Stark levels of the Er3+ 4Io 15/2 state in Er2O3 are calculated in the ab initio point charge crystal field approximation. In all calculations the Breit interaction and leading QED effects are included as perturbations. Different strategies for describing electron correlation effects are tested and evaluated. The final results are compared with experiment and other methods.
  •  
5.
  • Gaigalas, Gediminas, et al. (författare)
  • JJ2LSJ Transformation and Unique Labeling for Energy Levels
  • 2017
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The JJ2LSJ program, which is important not only for the GRASP2K package but for the atom theory in general, is presented. The program performs the transformation of atomic state functions (ASFs) from coupled CSF basis. In addition, the program implements a procedure that assigns a unique label to all energy levels. Examples of how to use the JJ2LSJ program are given. Several cases are presented where there is a unique labeling problem.
  •  
6.
  • Jönsson, Per, et al. (författare)
  • Atomic Structure Calculations with Spectroscopic Accuracy : Implications for Laboratory Work
  • 2014
  • Ingår i: Ninth International Conference on Atomic and Molecular Data and Their Applications: book of abstracts. ; , s. 112-112
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The observation of atomic spectra constitutes an important tool for diagnostics of astrophysical plasmas, and there is a boom of activity involving several new and planned multibillion-dollar telescopes. However, to correctly interpret observed spectra, the atomic lines must be known and identified from laboratory work. Laboratory work is hard and time-consuming, and present efforts do not in any way match the needs for data, partly due to lack of funding [1] and partly due to experimental limitations. One goal of atomic structure calculations is to provide energy differences with ”spectroscopic accuracy” to aid laboratory work. Using highly accurate calculated energy differences it should be possible to directly validate or rule out experimental energy level and line identifications. New and efficient methods for solving the Dirac-equation for many electron systems, together with today’s fast computers, indeed make it possible to perform calculations with spectroscopic accuracy for ions of medium complexity. We give a number of examples of calculations based on the relativistic configuration interaction (RCI) method in B-, C-, N-, O-, and Ne-like systems, where energies levels far up in the spectrum have been predicted with uncertainties of 0.05 % or less [2,3,4]. Depending on the spectral range, these uncertainties are in many cases close to what can be experimentally obtained. The above mentioned calculations reveal that many experimental energy levels given in the literature and in data bases are wrong and based on misidentifications. We finally show how the accuracy of atomic structure calculations can be further improved, and results extended to more complex systems, by using the novel partitioned configuration function interaction (PCFI) method [5]. Some practical consequences of the recent advances in computational methodology for laboratory work are discussed.
  •  
7.
  • Jönsson, Per, et al. (författare)
  • Energies, Transition Rates, Hyperfine Structures, and Landé gJ Factors for the Fine-structure Levels of the 2s22p2, 2s2p3, and 2p4 Configurations in Carbon-like Ions between F IV and Ni XXIII
  • 2011
  • Ingår i: Atomic Data and Nuclear Data Tables. - : Elsevier. - 0092-640X .- 1090-2090. ; 97:6, s. 648-691
  • Tidskriftsartikel (refereegranskat)abstract
    • Energies, electric dipole, magnetic dipole, and electric quadrupole transition rates, hyperfine structures, and Landé g J factors from relativistic configuration interaction calculations are reported for the states of the (1s 2 )2s 2 2p 2 , 2s2p 3 , and 2p 4 configurations in all carbon-like ions between F IV and Ni XXIII. Valence, core-valence, and core-core correlation effects were accounted for through single/double-excitation-multireference expansions to increasing sets of active orbitals. The calculated energy levels generally agree within a few hundred cm -1 with the experimentally compiled results, and the Babushkin (length), and Coulomb (velocity) forms of transition rates agree within less than 1% for a majority of the allowed transitions.
  •  
8.
  • Jönsson, Per, et al. (författare)
  • Multiconfiguration Dirac-Hartree-Fock Calculations with Spectroscopic Accuracy : Applications to Astrophysics
  • 2017
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 5:2
  • Forskningsöversikt (refereegranskat)abstract
    • Atomic data, such as wavelengths, spectroscopic labels, broadening parameters and transition rates, are necessary for many applications, especially in plasma diagnostics, and for interpreting the spectra of distant astrophysical objects. The experiment with its limited resources is unlikely to ever be able to provide a complete dataset on any atomic system. Instead, the bulk of the data must be calculated. Based on fundamental principles and well-justified approximations, theoretical atomic physics derives and implements algorithms and computational procedures that yield the desired data. We review progress and recent developments in fully-relativistic multiconfiguration Dirac-Hartree-Fock methods and show how large-scale calculations can give transition energies of spectroscopic accuracy, i.e., with an accuracy comparable to the one obtained from observations, as well as transition rates with estimated uncertainties of a few percent for a broad range of ions. Finally, we discuss further developments and challenges.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy