SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaigalas Gediminas) ;pers:(Wang Kai)"

Sökning: WFRF:(Gaigalas Gediminas) > Wang Kai

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jönsson, Per, et al. (författare)
  • Multiconfiguration Dirac-Hartree-Fock Calculations with Spectroscopic Accuracy : Applications to Astrophysics
  • 2017
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 5:2
  • Forskningsöversikt (refereegranskat)abstract
    • Atomic data, such as wavelengths, spectroscopic labels, broadening parameters and transition rates, are necessary for many applications, especially in plasma diagnostics, and for interpreting the spectra of distant astrophysical objects. The experiment with its limited resources is unlikely to ever be able to provide a complete dataset on any atomic system. Instead, the bulk of the data must be calculated. Based on fundamental principles and well-justified approximations, theoretical atomic physics derives and implements algorithms and computational procedures that yield the desired data. We review progress and recent developments in fully-relativistic multiconfiguration Dirac-Hartree-Fock methods and show how large-scale calculations can give transition energies of spectroscopic accuracy, i.e., with an accuracy comparable to the one obtained from observations, as well as transition rates with estimated uncertainties of a few percent for a broad range of ions. Finally, we discuss further developments and challenges.
  •  
2.
  • Li, Yanting, et al. (författare)
  • Performance Tests and Improvements on the rmcdhf and rci Programs of GRASP
  • 2023
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The latest published version of GRASP (General-purpose Relativistic Atomic Structure Package), i.e., GRASP2018, retains a few suboptimal subroutines/algorithms, which reflect the limited memory and file storage of computers available in the 1980s. Here we show how the efficiency of the relativistic self-consistent-field (SCF) procedure of the multiconfiguration-Dirac-Hartree-Fock (MCDHF) method and the relativistic configuration-interaction (RCI) calculations can be improved significantly. Compared with the original GRASP codes, the present modified version reduces the CPU times by factors of a few tens or more. The MPI performances for all the original and modified codes are carefully analyzed. Except for diagonalization, all computational processes show good MPI scaling.
  •  
3.
  • Li, Yan Ting, et al. (författare)
  • Reducing the computational load : atomic multiconfiguration calculations based on configuration state function generators
  • 2023
  • Ingår i: Computer Physics Communications. - : Elsevier. - 0010-4655 .- 1879-2944. ; 283, s. 108562-108562
  • Tidskriftsartikel (refereegranskat)abstract
    • In configuration interaction (CI) calculations the atomic wave functions are given as expansions over configuration state functions (CSFs) built on relativistic one-electron orbitals. The expansion coefficients of the configuration state functions are obtained by constructing and diagonalizing the Hamiltonian matrix. Here we show how a regrouping of the configuration state functions and the introduction of configuration state function generators (CSFGs) allow for a substantial reduction of the computational load in relativistic CI calculations. The computational methodology based on configuration state function generators, recently implemented in the General Relativistic Atomic Structure package (Grasp2018, Froese Fischer et al. (2019) [16]), is applied to a number of atomic systems and correlation models with increasing sets of one-electron orbitals. We demonstrate a reduction of the CPU time with factors between 10 and 14 for the largest CI calculations. The inclusion of the Breit interaction into the calculations is time consuming. By applying restrictions on the Breit integrals we show that it is possible to further reduce the CPU times with factors between 2 and 3, with negligible changes to the computed excitation energies. We also demonstrate that the introduction of configuration state function generators allows for efficient a priori condensation techniques, with reductions of the expansions sizes with factors between 1.5 and 2.5 and the CPU time with factors between 2.5 and 4.5, again with negligible changes to the excitation energies. In total we demonstrate reductions of the CPU time with factors up to 68 for CI calculations based on configuration state function generators, restrictions on the Breit integrals and with a priori condensed expansions compared to ordinary CI calculations without restrictions on the Breit integrals and with full expansions. Further perspectives of the new methodology based on configuration state function generators are given.
  •  
4.
  • Papoulia, Asimina, et al. (författare)
  • Coulomb (Velocity) Gauge Recommended in Multiconfiguration Calculations of Transition Data Involving Rydberg Series
  • 2019
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Astronomical spectroscopy has recently expanded into the near-infrared (nIR) wavelength region, raising the demands on atomic transition data. The interpretation of the observed spectra largely relies on theoretical results, and progress towards the production of accurate theoretical data must continuously be made. Spectrum calculations that target multiple atomic states at the same time are by no means trivial. Further, numerous atomic systems involve Rydberg series, which are associated with additional difficulties. In this work, we demonstrate how the challenges in the computations of Rydberg series can be handled in large-scale multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction (RCI) calculations. By paying special attention to the construction of the radial orbital basis that builds the atomic state functions, transition data that are weakly sensitive to the choice of gauge can be obtained. Additionally, we show that the Babushkin gauge should not always be considered as the preferred gauge, and that, in the computations of transition data involving Rydberg series, the Coulomb gauge could be more appropriate for the analysis of astrophysical spectra. To illustrate the above, results from computations of transitions involving Rydberg series in the astrophysically important C IV and C III ions are presented and analyzed.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy