Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Galan A) "

Sökning: WFRF:(Galan A)

Sortera/gruppera träfflistan
  • Ahdida, C., et al. (författare)
  • Sensitivity of the SHiP experiment to light dark matter
  • 2021
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with alpha(D) = 0.1 and m(A ') = 3m(chi), we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 center dot 10(20) protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic.
  • Ahdida, C., et al. (författare)
  • Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
  • 2019
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHIP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of O(10(6)). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution.
  • Ahdida, C., et al. (författare)
  • Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target
  • 2020
  • Ingår i: European Physical Journal C. - 1434-6044 .- 1434-6052. ; 80:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27 +/- 0.07)x1011protons on target was recorded. This amounts to approximatively 1% of a SHiP spill.
  • Ahdida, C., et al. (författare)
  • Sensitivity of the SHiP experiment to Heavy Neutral Leptons
  • 2019
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate. The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between O(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL's benchmark models and provide a way to calculate the SHiP's sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.
  • Ahdida, C., et al. (författare)
  • The experimental facility for the Search for Hidden Particles at the CERN SPS
  • 2019
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221 .- 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to O(10) GeV/c(2) in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background.
  • Ahdida, C., et al. (författare)
  • The magnet of the scattering and neutrino detector for the SHiP experiment at CERN
  • 2020
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.
  • Chang, A. Y., et al. (författare)
  • Past, present, and future of global health financing : A review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995-2050
  • 2019
  • Ingår i: The Lancet. - : Lancet Publishing Group. - 0140-6736 .- 1474-547X. ; 393:10187, s. 2233-2260
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. Methods: We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories-government, out-of-pocket, and prepaid private health spending-and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. Findings: Between 1995 and 2016, health spending grew at a rate of 4.00% (95% uncertainty interval 3.89-4.12) annually, although it grew slower in per capita terms (2.72% [2.61-2.84]) and increased by less than $1 per capita over this period in 22 of 195 countries. The highest annual growth rates in per capita health spending were observed in upper-middle-income countries (5.55% [5.18-5.95]), mainly due to growth in government health spending, and in lower-middle-income countries (3.71% [3.10-4.34]), mainly from DAH. Health spending globally reached $8.0 trillion (7.8-8.1) in 2016 (comprising 8.6% [8.4-8.7] of the global economy and $10.3 trillion [10.1-10.6] in purchasing-power parity-adjusted dollars), with a per capita spending of US$5252 (5184-5319) in high-income countries, $491 (461-524) in upper-middle-income countries, $81 (74-89) in lower-middle-income countries, and $40 (38-43) in low-income countries. In 2016, 0.4% (0.3-0.4) of health spending globally was in low-income countries, despite these countries comprising 10.0% of the global population. In 2018, the largest proportion of DAH targeted HIV/AIDS ($9.5 billion, 24.3% of total DAH), although spending on other infectious diseases (excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6.27% per year). The leading sources of DAH were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation). For the first time, we included estimates of China’s contribution to DAH ($644.7 million in 2018). Globally, health spending is projected to increase to $15.0 trillion (14.0-16.0) by 2050 (reaching 9.4% [7.6-11.3] of the global economy and $21.3 trillion [19.8-23.1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of 1.84% (1.68-2.02) annually, and with continuing disparities in spending between countries. In 2050, we estimate that 0.6% (0.6-0.7) of health spending will occur in currently low-income countries, despite these countries comprising an estimated 15.7% of the global population by 2050. The ratio between per capita health spending in high-income and low-income countries was 130.2 (122.9-136.9) in 2016 and is projected to remain at similar levels in 2050 (125.9 [113.7-138.1]). The decomposition analysis identified governments’ increased prioritisation of the health sector and economic development as the strongest factors associated with increases in government health spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the health sector and increased government spending, health spending per capita could more than double, with greater impacts in countries that currently have the lowest levels of government health spending. Interpretation: Financing for global health has increased steadily over the past two decades and is projected to continue increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income countries. Many low-income countries are expected to remain dependent on development assistance, although with greater government spending, larger investments in health are feasible. In the absence of sustained new investments in health, increasing efficiency in health spending is essential to meet global health targets. © 2019 The Author(s).
  • Dupuis, Josee, et al. (författare)
  • New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
  • 2010
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 42:2, s. 32-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (89)
konferensbidrag (10)
bokkapitel (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (97)
övrigt vetenskapligt (6)
Galan, Pilar (24)
Hercberg, Serge (12)
Medina, J (11)
Lathrop, G. Mark (10)
Lathrop, GM (10)
Lathrop, M (9)
visa fler...
Ferrucci, Luigi (9)
Lathrop, Mark (9)
Eklund, Patrik, 1958 ... (9)
Abecasis, Goncalo R. (8)
Voight, Benjamin F. (8)
Nilsson, P. (7)
Groop, Leif (7)
Salomaa, Veikko (7)
Hansson, J. (7)
Olsson, H. (7)
Martin, NG (7)
Uitterlinden, AG (7)
Ferrucci, L (7)
Lubinski, J (7)
Wareham, Nicholas J (7)
Clarke, Robert (7)
Clarke, R (7)
Ricciardi, S. (7)
Tanaka, Toshiko (7)
Boehnke, Michael (7)
Mohlke, Karen L (7)
Tuomilehto, Jaakko (7)
Gillanders, EM (7)
Hayward, NK (7)
Ingvar, C (7)
Bishop, DT (7)
Loos, Ruth J F (7)
Johnson, Toby (7)
Gruis, NA (7)
Ghiorzo, P (7)
Brown, KM (7)
Debniak, T (7)
Azizi, E (7)
Hoiom, V (7)
Puig, S (7)
Barrett, JH (7)
Avril, MF (7)
Novakovic, S (7)
Elder, DE (7)
Harland, M (7)
Iles, MM (7)
Kanetsky, PA (7)
Landi, MT (7)
Goldstein, AM (7)
visa färre...
Karolinska Institutet (43)
Umeå universitet (29)
Uppsala universitet (22)
Lunds universitet (18)
Göteborgs universitet (9)
Stockholms universitet (9)
visa fler...
Kungliga Tekniska Högskolan (4)
Chalmers tekniska högskola (2)
Mittuniversitetet (1)
Högskolan i Skövde (1)
Sveriges Lantbruksuniversitet (1)
Högskolan Dalarna (1)
visa färre...
Engelska (101)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (32)
Naturvetenskap (31)
Teknik (4)


Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy