SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Galesloot Tessel E.) ;pers:(Munroe Patricia B.)"

Sökning: WFRF:(Galesloot Tessel E.) > Munroe Patricia B.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
2.
  • Turcot, Valerie, et al. (författare)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
3.
  • Marouli, Eirini, et al. (författare)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
4.
  • van der Laan, Sander W., et al. (författare)
  • Cystatin C and Cardiovascular Disease : A Mendelian Randomization Study
  • 2016
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097 .- 1558-3597. ; 68:9, s. 934-945
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. OBJECTIVES The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. METHODS We incorporated participant data from 16 prospective cohorts (n = 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n = 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. RESULTS Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p = 2.12 x 10(-14)). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p = 5.95 x 10(-211)), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence fora causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p = 0,994), which was statistically different from the observational estimate (p = 1.6 x 10(-5)). A causal effect of cystatin C was not detected for any individual component of CVD. CONCLUSIONS Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy