SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gali Adam) ;pers:(Ohshima Takeshi)"

Sökning: WFRF:(Gali Adam) > Ohshima Takeshi

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christle, David J., et al. (författare)
  • Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface
  • 2017
  • Ingår i: Physical Review X. - : AMER PHYSICAL SOC. - 2160-3308. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here, we demonstrate that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on Si shows promise for future quantum networks based on SiC defects.
  •  
2.
  •  
3.
  • Davidsson, Joel, et al. (författare)
  • Identification of divacancy and silicon vacancy qubits in 6H-SiC
  • 2019
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 114:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Point defects in semiconductors are relevant for use in quantum technologies as room temperature qubits and single photon emitters. Among suggested defects for these applications are the negatively charged silicon vacancy and the neutral divacancy in SiC. The possible nonequivalent configurations of these defects have been identified in 4H-SiC, but for 6H-SiC, the work is still in progress. In this paper, we identify the different configurations of the silicon vacancy and the divacancy defects to each of the V1-V3 and the QL1-QL6 color centers in 6H-SiC, respectively. We accomplish this by comparing the results from ab initio calculations with experimental measurements for the zero-phonon line, hyperfine tensor, and zero-field splitting. Published under license by AIP Publishing.
  •  
4.
  • Ivády, Viktor, et al. (författare)
  • Identification of Si-vacancy related room-temperature qubits in 4H silicon carbide
  • 2017
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 96:16
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of a microscopic configuration of point defects acting as quantum bits is a key step in the advance of quantum information processing and sensing. Among the numerous candidates, silicon-vacancy related centers in silicon carbide (SiC) have shown remarkable properties owing to their particular spin-3/2 ground and excited states. Although, these centers were observed decades ago, two competing models, the isolated negatively charged silicon vacancy and the complex of negatively charged silicon vacancy and neutral carbon vacancy [Phys. Rev. Lett. 115, 247602 (2015)], are still argued as an origin. By means of high-precision first-principles calculations and high-resolution electron spin resonance measurements, we here unambiguously identify the Si-vacancy related qubits in hexagonal SiC as isolated negatively charged silicon vacancies. Moreover, we identify the Si-vacancy qubit configurations that provide room-temperature optical readout.
  •  
5.
  • Ivády, Viktor, et al. (författare)
  • Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study
  • 2021
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 103:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The nitrogen-vacancy center (NV center) in diamond at magnetic fields corresponding to the ground-state level anticrossing (GSLAC) region gives rise to rich photoluminescence (PL) signals due to the vanishing energy gap between the electron spin states, which enables for a broad variety of environmental couplings to have an effect on the NV centers luminescence. Previous works have addressed several aspects of the GSLAC photoluminescence, however, a comprehensive analysis of the GSLAC signature of NV ensembles in different spin environments at various external fields is missing. Here we employ a combination of experiments and recently developed numerical methods to investigate in detail the effects of transverse electric and magnetic fields, strain, P1 centers, NV centers, and the C-13 nuclear spins on the GSLAC photoluminescence. Our comprehensive analysis provides a solid ground for advancing various microwave-free applications at the GSLAC, including but not limited to magnetometry, spectroscopy, dynamic nuclear polarization (DNP), and nuclear magnetic resonance (NMR) detection. We demonstrate that not only the most abundant (NV)-N-14 center but the (NV)-N-15 can also be utilized in such applications.
  •  
6.
  • Magnusson, Björn, et al. (författare)
  • Excitation properties of the divacancy in 4H-SiC
  • 2018
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 98:19
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the quenching of the photoluminescence (PL) from the divacancy defect in 4H-SiC consisting of a nearest-neighbor silicon and carbon vacancies. The quenching occurs only when the PL is excited below certain photon energies (thresholds), which differ for the four different inequivalent divacancy configurations in 4H-SiC. An accurate theoretical ab initio calculation for the charge-transfer levels of the divacancy shows very good agreement between the position of the (0/-) level with respect to the conduction band for each divacancy configuration and the corresponding experimentally observed threshold, allowing us to associate the PL decay with conversion of the divacancy from neutral to negative charge state due to capture of electrons photoionized from other defects (traps) by the excitation. Electron paramagnetic resonance measurements are conducted in the dark and under excitation similar to that used in the PL experiments and shed light on the possible origin of traps in the different samples. A simple model built on this concept agrees well with the experimentally observed decay curves.
  •  
7.
  • Miao, Kevin C., et al. (författare)
  • Electrically driven optical interferometry with spins in silicon carbide
  • 2019
  • Ingår i: Science Advances. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2375-2548. ; 5:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spins weak coupling to its environment not only bestows excellent coherence properties but also limits desired drive fields. The excited-state orbitals of these electrons, however, can exhibit stronger coupling to phononic and electric fields. Here, we demonstrate electrically driven coherent quantum interference in the optical transition of single, basally oriented divacancies in commercially available 4H silicon carbide. By applying microwave frequency electric fields, we coherently drive the divacancys excited-state orbitals and induce Landau-Zener-Stuckelberg interference fringes in the resonant optical absorption spectrum. In addition, we find remarkably coherent optical and spin subsystems enabled by the basal divacancys symmetry. These properties establish divacancies as strong candidates for quantum communication and hybrid system applications, where simultaneous control over optical and spin degrees of freedom is paramount.
  •  
8.
  • Morioka, Naoya, et al. (författare)
  • Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide
  • 2020
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum systems combining indistinguishable photon generation and spin-based quantum information processing are essential for remote quantum applications and networking. However, identification of suitable systems in scalable platforms remains a challenge. Here, we investigate the silicon vacancy centre in silicon carbide and demonstrate controlled emission of indistinguishable and distinguishable photons via coherent spin manipulation. Using strong off-resonant excitation and collecting zero-phonon line photons, we show a two-photon interference contrast close to 90% in Hong-Ou-Mandel type experiments. Further, we exploit the systems intimate spin-photon relation to spin-control the colour and indistinguishability of consecutively emitted photons. Our results provide a deep insight into the systems spin-phonon-photon physics and underline the potential of the industrially compatible silicon carbide platform for measurement-based entanglement distribution and photonic cluster state generation. Additional coupling to quantum registers based on individual nuclear spins would further allow for high-level network-relevant quantum information processing, such as error correction and entanglement purification. Defects in silicon carbide can act as single photon sources that also have the benefit of a host material that is already used in electronic devices. Here the authors demonstrate that they can control the distinguishability of the emitted photons by changing the defect spin state.
  •  
9.
  • Nagy, Roland, et al. (författare)
  • High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Scalable quantum networking requires quantum systems with quantum processing capabilities. Solid state spin systems with reliable spin-optical interfaces are a leading hardware in this regard. However, available systems suffer from large electron-phonon interaction or fast spin dephasing. Here, we demonstrate that the negatively charged silicon-vacancy centre in silicon carbide is immune to both drawbacks. Thanks to its (4)A(2) symmetry in ground and excited states, optical resonances are stable with near-Fourier-transform-limited linewidths, allowing exploitation of the spin selectivity of the optical transitions. In combination with millisecond-long spin coherence times originating from the high-purity crystal, we demonstrate high-fidelity optical initialization and coherent spin control, which we exploit to show coherent coupling to single nuclear spins with similar to 1 kHz resolution. The summary of our findings makes this defect a prime candidate for realising memory-assisted quantum network applications using semiconductor-based spin-to-photon interfaces and coherently coupled nuclear spins.
  •  
10.
  • Udvarhelyi, Peter, et al. (författare)
  • Vibronic States and Their Effect on the Temperature and Strain Dependence of Silicon-Vacancy Qubits in 4H-SiC
  • 2020
  • Ingår i: Physical Review Applied. - : AMER PHYSICAL SOC. - 2331-7019. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon-vacancy qubits in silicon carbide (SiC) are emerging tools in quantum-technology applications due to their excellent optical and spin properties. In this paper, we explore the effect of temperature and strain on these properties by focusing on the two silicon-vacancy qubits, V1 and V2, in 4H-SiC. We apply density-functional theory beyond the Born-Oppenheimer approximation to describe the temperature-dependent mixing of electronic excited states assisted by phonons. We obtain a polaronic gap of around 5 and 22 meV for the V1 and V2 centers, respectively, which results in a significant difference in the temperature-dependent dephasing and zero-field splitting of the excited states, which explains recent experimental findings. We also compute how crystal deformations affect the zero-phonon line of these emitters. Our predictions are important ingredients in any quantum applications of these qubits sensitive to these effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy