SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Galter Dagmar) "

Sökning: WFRF:(Galter Dagmar)

  • Resultat 1-10 av 17
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belin, A. C., et al. (författare)
  • Association of a protective paraoxonase 1 (PON1) polymorphism in Parkinson's disease
  • 2012
  • Ingår i: Neuroscience Letters. - : Elsevier. - 0304-3940 .- 1872-7972. ; 522:1, s. 30-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Pesticide exposure has been suggested to increase the risk to develop Parkinson's disease (PD). The arylesterase paraoxonase 1 (PON1) is mainly expressed in the liver and hydrolyzes organophosphates such as pesticides. The polymorphism Leu54Met (rs854560) in PON1, impairing enzyme activity and leading to decreased PON1 expression levels, has been reported to be associated with Parkinson's disease (PD). PON1 is part of a cluster on chromosome 7q21.3 together with PON2 and PON3. We investigated the occurrence of four additional polymorphisms in PON1 and two in PON2 in a Swedish PD case-control material. We found a significant association (p = 0.007) with a PON1 promoter polymorphism, rs854571. The minor allele was more common among controls than PD cases which suggest a protective effect. This is strengthened by the fact that rs854571 is in strong linkage disequilibrium with another PON1 promoter polymorphism, rs854572, reported to increase PON1 gene expression. Our findings support the hypothesis that PON1 is involved in the etiology of PD and that higher PON1 levels are reducing the risk for PD. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
  •  
2.
  • Ran, C., et al. (författare)
  • Strong association between glucocerebrosidase mutations and Parkinson's disease in Sweden
  • 2016
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 45
  • Tidskriftsartikel (refereegranskat)abstract
    • Several genetic studies have demonstrated an association between mutations in glucocerebrosidase (GBA), originally implicated in Gaucher's disease, and an increased risk of Parkinson's disease (PD). We have investigated the possible involvement of genetic GBA variations in PD in the Swedish population. Three GBA variants, E326K, N370S, and L444P were screened in the largest Swedish Parkinson cohort reported to date; 1625 cases and 2025 control individuals. We found a significant association with high effect size of the rare variant L444P with PD (odds ratio 8.17; 95% confidence interval: 2.51-26.23; p-value = 0.0020) and a significant association of the common variant E326K (odds ratio 1.60; 95% confidence interval: 1.16-2.22; p-value = 0.026). The rare variant N370S showed a trend for association. Most L444P carriers (68%) were found to reside in northern Sweden, which is consistent with a higher prevalence of Gaucher's disease in this part of the country. Our findings support the role of GBA mutations as risk factors for PD and point to lysosomal dysfunction as a mechanism contributing to PD etiology. (C) 2016 The Author(s). Published by Elsevier Inc.
  •  
3.
  • Anvret, Anna, et al. (författare)
  • Possible involvement of a mitochondrial translation initiation factor 3 variant causing decreased mRNA levels in Parkinson's disease.
  • 2010
  • Ingår i: Parkinson's disease. - 2042-0080. ; 2010
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes important for mitochondrial function have been implicated in Parkinson's disease (PD). Mitochondrial translation initiation factor 3 (MTIF3) is a nuclear encoded protein required for the initiation of complex formation on mitochondrial ribosomes. Dysfunction of MTIF3 may impair mitochondrial function and dopamine neurons appear to be particularly vulnerable to oxidative stress, which may relate to their degeneration in PD. An association was recently reported between the synonymous rs7669(C>T) in MTIF3 and PD in a German case-control material. We investigated rs7669 in a Swedish Parkinson case-control material. The study revealed no significant association of the individual genotypes or alleles with PD. When comparing the combined TT/CT-genotypes versus the CC-genotype, we observed a significant association (P = .0473) with PD. We also demonstrated that the TT-genotype causes a significant decrease in MTIF3 mRNA expression compared to the CC-genotype (P = .0163). Our findings support the hypothesis that MTIF3 may be involved in the etiology of PD.
  •  
4.
  • Belin, Andrea Carmine, et al. (författare)
  • Association study of two genetic variants in mitochondrial transcription factor A (TFAM) in Alzheimer's and Parkinson's disease.
  • 2007
  • Ingår i: Neuroscience letters. - 0304-3940. ; 420:3, s. 257-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial (mt) dysfunction has been implicated in Alzheimer's (AD) and Parkinson's disease (PD). Mitochondrial transcription factor A (TFAM) is needed for mtDNA maintenance, regulating mtDNA copy number and is absolutely required for transcriptional initiation at mtDNA promoters. Two genetic variants in TFAM have been reported to be associated with AD in a Caucasian case-control material collected from Germany, Switzerland and Italy. One of these variants was reported to show a tendency for association with AD in a pooled Scottish and Swedish case-control material and the other variant was reported to be associated with AD in a recent meta-analysis. We investigated these two genetic variants, rs1937 and rs2306604, in an AD and a PD case-control material, both from Sweden and found significant genotypic as well as allelic association to marker rs2306604 in the AD case-control material (P=0.05 and P=0.03, respectively), where the A-allele appears to increase risk for developing AD. No association was observed for marker rs1937. We did not find any association in the PD case-control material for either of the two markers. The distribution of the two-locus haplotype frequencies (based on rs1937 and rs2306604) did not differ significantly between affected individuals and controls in the two sample sets. However, the global P-value for haplotypic association testing indicated borderline association in the AD sample set. Our data suggests that the rs2306604 A-allele could be a moderate risk factor for AD, which is supported by the recent meta-analysis.
  •  
5.
  • Buervenich, Silvia, et al. (författare)
  • A rare truncating mutation in ADH1C (G78Stop) shows significant association with Parkinson disease in a large international sample.
  • 2005
  • Ingår i: Archives of neurology. - 0003-9942. ; 62:1, s. 74-8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Alcohol dehydrogenases (ADHs) may be involved in the pathogenesis of neurodegenerative disorders because of their multiple roles in detoxification pathways and retinoic acid synthesis. In a previous study, significant association of an ADH class IV allele with Parkinson disease (PD) was found in a Swedish sample. PATIENTS: The previously associated single-nucleotide polymorphism plus 12 further polymorphisms in the ADH cluster on human chromosome 4q23 were screened for association in an extension of the original sample that now included 123 Swedish PD patients and 127 geographically matched control subjects. A rare nonsense single-nucleotide polymorphism in ADH1C (G78stop, rs283413) was identified in 3 of these patients but in no controls. To obtain sufficient power to detect a possible association of this rare variant with disease, we screened a large international sample of 1076 PD patients of European ancestry and 940 matched controls. RESULTS: The previously identified association with an ADH class IV allele remained significant (P<.02) in the extended Swedish study. Furthermore, in the international collaboration, the G78stop mutation in ADH1C was found in 22 (2.0%) of the PD patients but only in 6 controls (0.6%). This association was statistically significant (chi(2)(1) = 7.5; 2-sided P = .007; odds ratio, 3.25 [95% confidence interval, 1.31-8.05]). In addition, the G78stop mutation was identified in 4 (10.0%) of 40 Caucasian index cases with PD with mainly hereditary forms of the disorder. CONCLUSION: Findings presented herein provide further evidence for mutations in genes encoding ADHs as genetic risk factors for PD.
  •  
6.
  • Carmine Belin, Andrea, et al. (författare)
  • Leucine-rich repeat kinase 2 (LRRK2) mutations in a Swedish Parkinson cohort and a healthy nonagenarian.
  • 2006
  • Ingår i: Movement disorders : official journal of the Movement Disorder Society. - 0885-3185. ; 21:10, s. 1731-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific variants of Leucine-rich repeat kinase 2 (LRRK2) have been shown to associate with Parkinson's disease (PD). Several mutations have been found in PD populations from different parts of the world. We investigated the occurrence of three mutations (R1441G/C/H, G2019S, and I2020T) in our Swedish case-control material and identified four carriers of the G2019S mutation in 284 PD cases and 1 95-year-old carrier in 305 controls. The other two variants were absent in our material. We conclude that the LRRK2 G2019S mutation constitutes a significant factor for PD in the Swedish population and that it is not completely penetrant.
  •  
7.
  • Carmine Belin, Andrea, et al. (författare)
  • S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden.
  • 2007
  • Ingår i: Parkinsonism & related disorders. - 1353-8020. ; 13:5, s. 295-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is a neuron-specific enzyme that removes ubiquitin from the C-terminal end of substrates and a component of the ubiquitin-proteasome system. A protective effect of a UCH-L1 variant, S18Y, was suggested since the common variant was found to be inversely associated with sporadic Parkinson's disease (PD). We investigated the association of S18Y in our Swedish PD material. The tyrosine variant was significantly inversely associated with PD (P=0.049) and with a low age of onset (50 years) (P=0.017) in the case-control material, supporting the hypothesis of a protective function.
  •  
8.
  • Hedskog, Louise, et al. (författare)
  • Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 110:19, s. 7916-7921
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well-established that subcompartments of endoplasmic reticulum (ER) are in physical contact with the mitochondria. These lipid raft-like regions of ER are referred to as mitochondria-associated ER membranes (MAMs), and they play an important role in, for example, lipid synthesis, calcium homeostasis, and apoptotic signaling. Perturbation of MAM function has previously been suggested in Alzheimer's disease (AD) as shown in fibroblasts from AD patients and a neuroblastoma cell line containing familial presenilin-2 AD mutation. The effect of AD pathogenesis on the ER-mitochondria interplay in the brain has so far remained unknown. Here, we studied ER-mitochondria contacts in human AD brain and related AD mouse and neuronal cell models. We found uniform distribution of MAM in neurons. Phosphofurin acidic cluster sorting protein-2 and sigma 1 receptor, two MAM-associated proteins, were shown to be essential for neuronal survival, because siRNA knockdown resulted in degeneration. Up-regulated MAM-associated proteins were found in the AD brain and amyloid precursor protein (APP)(Swe/Lon) mouse model, in which up-regulation was observed before the appearance of plaques. By studying an ER-mitochondria bridging complex, inositol-1,4,5-triphosphate receptor-voltage-dependent anion channel, we revealed that nanomolar concentrations of amyloid beta-peptide increased inositol-1,4,5-triphosphate receptor and voltage-dependent anion channel protein expression and elevated the number of ER-mitochondria contact points and mitochondrial calcium concentrations. Our data suggest an important role of ER-mitochondria contacts and cross-talk in AD pathology.
  •  
9.
  • Karlsson, Robert, et al. (författare)
  • MAGI1 Copy Number Variation in Bipolar Affective Disorder and Schizophrenia
  • 2012
  • Ingår i: Biological Psychiatry. - 0006-3223 .- 1873-2402. ; 71:10, s. 922-930
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bipolar affective disorder (BPAD) and schizophrenia (SZ) are devastating psychiatric disorders that each affect about 1% of the population worldwide. Identification of new drug targets is an important step toward better treatment of these poorly understood diseases. Methods: Genome-wide copy number variation (CNV) was assessed and variants were ranked by co-occurrence with disease in 48 BPAD families. Additional support for involvement of the highest-ranking CNV from the family-based analysis in psychiatric disease was obtained through analysis of 4084 samples with BPAD, SZ, or schizoaffective disorder. Finally, a pooled analysis of in-house and published datasets was carried out including 10,925 cases with BPAD, SZ, or schizoaffective disorder and 16,747 controls. Results: In the family-based analysis, an approximately 200 kilobase (kb) deletion in the first intron of the MAGI1 gene was identified that segregated with BPAD in a pedigree (six out of six affected individuals; parametric logarithm of the odds score = 1.14). In the pooled analysis, seven additional insertions or deletions over 100 kb were identified in MAGI1 in cases, while only two such CNV events were identified in the same gene in controls (p = .023; Fisher's exact test). Because earlier work had identified a CNV in the close relative MAGI2 in SZ, the study was extended to include MAGI2. In the pooled analysis of MAGI2, two large deletions were found in cases, and two duplications were detected in controls. Conclusions: Results presented herein provide further evidence for a role of MAGI1 and MAGI2 in BPAD and SZ etiology.
  •  
10.
  • Simon, Daniel, et al. (författare)
  • An organic electronic biomimetic neuron enables auto-regulated neuromodulation
  • 2015
  • Ingår i: Biosensors & bioelectronics. - : Elsevier. - 0956-5663 .- 1873-4235. ; 71, s. 359-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Current therapies for neurological disorders are based on traditional medication and electric stimulation. Here, we present an organic electronic biomimetic neuron, with the capacity to precisely intervene with the underlying malfunctioning signalling pathway using endogenous substances. The fundamental function of neurons, defined as chemical-to-electrical-to-chemical signal transduction, is achieved by connecting enzyme-based amperometric biosensors and organic electronic ion pumps. Selective biosensors transduce chemical signals into an electric current, which regulates electrophoretic delivery of chemical substances without necessitating liquid flow. Biosensors detected neurotransmitters in physiologically relevant ranges of 5-80 mu M, showing linear response above 20 mu m with approx. 0.1 nA/mu M slope. When exceeding defined threshold concentrations, biosensor output signals, connected via custom hardware/software, activated local or distant neurotransmitter delivery from the organic electronic ion pump. Changes of 20 mu M glutamate or acetylcholine triggered diffusive delivery of acetylcholine, which activated cells via receptor-mediated signalling. This was observed in real-time by single-cell ratiometric Ca2+ imaging. The results demonstrate the potential of the organic electronic biomimetic neuron in therapies involving long-range neuronal signalling by mimicking the function of projection neurons. Alternatively, conversion of glutamate-induced descending neuromuscular signals into acetylcholine-mediated muscular activation signals may be obtained, applicable for bridging injured sites and active prosthetics. (C) 2015 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy