SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gamble Dale M) "

Sökning: WFRF:(Gamble Dale M)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
2.
  • Holmes, Michael V., et al. (författare)
  • Association between alcohol and cardiovascular disease : Mendelian randomisation analysis based on individual participant data
  • 2014
  • Ingår i: BMJ-BRIT MED J. - 1756-1833. ; 349, s. g4164
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease. Design Mendelian randomisation meta-analysis of 56 epidemiological studies. Participants 261 991 individuals of European descent, including 20 259 coronary heart disease cases and 10 164 stroke events. Data were available on ADH1B rs1229984 variant, alcohol phenotypes, and cardiovascular biomarkers. Main outcome measures Odds ratio for coronary heart disease and stroke associated with the ADH1B variant in all individuals and by categories of alcohol consumption. Results Carriers of the A-allele of ADH1B rs1229984 consumed 17.2% fewer units of alcohol per week (95% confidence interval 15.6% to 18.9%), had a lower prevalence of binge drinking (odds ratio 0.78 (95% CI 0.73 to 0.84)), and had higher abstention (odds ratio 1.27 (1.21 to 1.34)) than non-carriers. Rs1229984 A-allele carriers had lower systolic blood pressure (-0.88 (-1.19 to -0.56) mm Hg), interleukin-6 levels (-5.2% (-7.8 to -2.4%)), waist circumference (-0.3 (-0.6 to -0.1) cm), and body mass index (-0.17 (-0.24 to -0.10) kg/m(2)). Rs1229984 A-allele carriers had lower odds of coronary heart disease (odds ratio 0.90 (0.84 to 0.96)). The protective association of the ADH1B rs1229984 A-allele variant remained the same across all categories of alcohol consumption (P= 0.83 for heterogeneity). Although no association of rs1229984 was identified with the combined subtypes of stroke, carriers of the A-allele had lower odds of ischaemic stroke (odds ratio 0.83 (0.72 to 0.95)). Conclusions Individuals with a genetic variant associated with non-drinking and lower alcohol consumption had a more favourable cardiovascular profile and a reduced risk of coronary heart disease than those without the genetic variant. This suggests that reduction of alcohol consumption, even for light to moderate drinkers, is beneficial for cardiovascular health.
  •  
3.
  • Ju, Young Seok, et al. (författare)
  • Somatic mutations reveal asymmetric cellular dynamics in the early human embryo
  • 2017
  • Ingår i: Nature. - Nature Publishing Group. - 0028-0836. ; 543:7647, s. 714-718
  • Tidskriftsartikel (refereegranskat)abstract
    • Somatic cells acquire mutations throughout the course of an individual's life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and their contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. This study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.
  •  
4.
  • Nik-Zainal, Serena, et al. (författare)
  • Mutational Processes Molding the Genomes of 21 Breast Cancers
  • 2012
  • Ingår i: Cell. - Cell Press. - 1097-4172. ; 149:5, s. 979-993
  • Tidskriftsartikel (refereegranskat)abstract
    • All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis,'' was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.
  •  
5.
  • Nik-Zainal, Serena, et al. (författare)
  • The Life History of 21 Breast Cancers
  • 2012
  • Ingår i: Cell. - Cell Press. - 1097-4172. ; 149:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy