SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gamfeldt Lars) ;lar1:(su)"

Sökning: WFRF:(Gamfeldt Lars) > Stockholms universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Duffy, J. E., et al. (författare)
  • Biodiversity mediates top-down control in eelgrass ecosystems: a global comparative-experimental approach
  • 2015
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 18:7, s. 696-705
  • Tidskriftsartikel (refereegranskat)abstract
    • Nutrient pollution and reduced grazing each can stimulate algal blooms as shown by numerous experiments. But because experiments rarely incorporate natural variation in environmental factors and biodiversity, conditions determining the relative strength of bottom-up and top-down forcing remain unresolved. We factorially added nutrients and reduced grazing at 15 sites across the range of the marine foundation species eelgrass (Zostera marina) to quantify how top-down and bottom-up control interact with natural gradients in biodiversity and environmental forcing. Experiments confirmed modest top-down control of algae, whereas fertilisation had no general effect. Unexpectedly, grazer and algal biomass were better predicted by cross-site variation in grazer and eelgrass diversity than by global environmental gradients. Moreover, these large-scale patterns corresponded strikingly with prior small-scale experiments. Our results link global and local evidence that biodiversity and top-down control strongly influence functioning of threatened seagrass ecosystems, and suggest that biodiversity is comparably important to global change stressors.
  •  
2.
  • Eklöf, Johan, 1978, et al. (författare)
  • Community-level effects of rapid experiment warming and consumer loss outweigh effects of rapid ocean acidification.
  • 2015
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 124:8, s. 1040-1049
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and consumer loss simultaneously affect marine ecosystems, but we have limited understanding of the relative importance of these factors and the interactions between them. Moreover, effects of environmental change are mediated by organism traits or life histories, which determine their sensitivity. Yet, trait-based analyses have rarely been used to understand the effects of climate change, especially in the marine environment. Here we used a five-week mesocosm experiment to assess the single and interactive effects of 1) rapid ocean warming, 2) rapid ocean acidification, and 3) simulated consumer loss, on the diversity and composition of macrofauna communities in eelgrass Zostera marina beds. Experimental warming (ambient versus + 3.2°C) and loss of a key consumer (the omnivorous crustacean, Gammarus locusta) both increased macrofauna richness and abundance, and altered overall species trait distributions and life history composition. Warming and consumer-loss favored poorly defended epifaunal crustaceans (tube-building amphipods), and species that brood their offspring. We suggest these organisms were favored because warming and consumer-loss caused increased metabolism, food supply and, potentially, settling substrate, and lowered predation pressure from the omnivorous G. locusta. Importantly, we found no single, or interactive, effects of the rapid ocean acidification (ambient versus −0.35 pH units). We suggest this result reflects natural variability in the native habitat and, potentially, the short duration of the experiment: organisms in these communities routinely experience rapid diurnal pH fluctuations that exceed the mean ocean acidification predicted for the coming century (and used in our experiments). In summary, our study indicates that macrofauna in shallow vegetated ecosystems will be significantly more affected by rapid warming and consumer diversity loss than by rapid ocean acidification.
  •  
3.
  • Eklöf, Johan, 1978, et al. (författare)
  • Experimental climate change weakens the insurance effect of biodiversity
  • 2012
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 15:8, s. 864-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystems are simultaneously affected by biodiversity loss and climate change, but we know little about how these factors interact. We predicted that climate warming and CO 2-enrichment should strengthen trophic cascades by reducing the relative efficiency of predation-resistant herbivores, if herbivore consumption rate trades off with predation resistance. This weakens the insurance effect of herbivore diversity. We tested this prediction using experimental ocean warming and acidification in seagrass mesocosms. Meta-analyses of published experiments first indicated that consumption rate trades off with predation resistance. The experiment then showed that three common herbivores together controlled macroalgae and facilitated seagrass dominance, regardless of climate change. When the predation-vulnerable herbivore was excluded in normal conditions, the two resistant herbivores maintained top-down control. Under warming, however, increased algal growth outstripped control by herbivores and the system became algal-dominated. Consequently, climate change can reduce the relative efficiency of resistant herbivores and weaken the insurance effect of biodiversity.
  •  
4.
  • Gamfeldt, Lars, 1975, et al. (författare)
  • Higher levels of multiple ecosystem services are found in forests with more tree species
  • 2013
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Forests are of major importance to human society, contributing several crucial ecosystem services. Biodiversity is suggested to positively influence multiple services but evidence from natural systems at scales relevant to management is scarce. Here, across a scale of 400,000km2, we report that tree species richness in production forests shows positive to positively hump-shaped relationships with multiple ecosystem services. These include production of tree biomass, soil carbon storage, berry production and game production potential. For example, biomass production was approximately 50% greater with five than with one tree species. In addition, we show positive relationships between tree species richness and proxies for other biodiversity components. Importantly, no single tree species was able to promote all services, and some services were negatively correlated to each other. Management of production forests will therefore benefit from considering multiple tree species to sustain the full range of benefits that the society obtains from forests.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy