SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gamfeldt Lars) ;pers:(Roger Fabian)"

Sökning: WFRF:(Gamfeldt Lars) > Roger Fabian

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alsterberg, Christian, 1982, et al. (författare)
  • Habitat diversity and ecosystem multifunctionality-The importance of direct and indirect effects
  • 2017
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystems worldwide are facing habitat homogenization due to human activities. Although it is commonly proposed that such habitat homogenization can have negative repercussions for ecosystem functioning, this question has yet to receive explicit scientific attention. We expand on the framework for evaluating the functional consequences of bio-diversity loss by scaling up from the level of species to the level of the entire habitats. Just as species diversity generally fosters ecosystem functioning through positive interspecies interactions, we hypothesize that different habitats within ecosystems can facilitate each other through structural complementarity and through exchange of material and energy across habitats. We show that experimental ecosystems comprised of a diversity of habitats show higher levels of multiple ecosystem functions than ecosystems with low habitat diversity. Our results demonstrate that the effect of habitat diversity on multifunctionality varies with season; it has direct effects on ecosystem functioning in summer and indirect effects, via changes in species diversity, in autumn, but no effect in spring. We propose that joint consideration of habitat diversity and species diversity will prove valuable for both environmental management and basic research.
  •  
2.
  • Gamfeldt, Lars, 1975, et al. (författare)
  • Revisiting the biodiversity-ecosystem multifunctionality relationship
  • 2017
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 1:7
  • Tidskriftsartikel (refereegranskat)abstract
    • A recent and prominent claim for the value of biodiversity is its importance for sustaining multiple ecosystem functions. The general idea is intuitively appealing: since all species are to some extent unique, each will be important for a different set of functions. Therefore, as more functions are considered, a greater diversity of species is necessary to sustain all functions simultaneously. However, we show here that the relationship between biodiversity and ecosystem functioning does not change with the number of functions considered. Biodiversity affects the level of multifunctionality via non-additive effects on individual functions, and the effect on multifunctionality equals the average effect on single functions. These insights run counter to messages in the literature. In the light of our simulations, we present limitations and pitfalls with current methods used to study biodiversity-multifunctionality, which together provide a perspective for future studies. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
  •  
3.
  • Gamfeldt, Lars, 1975, et al. (författare)
  • Scaling-up the biodiversity-ecosystem functioning relationship: the effect of environmental heterogeneity on transgressive overyielding
  • 2023
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 2023:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of how biodiversity sustains ecosystem function comes predominantly from studies focused on small spatial scales. Thus, we know relatively little about the role of biodiversity at larger scales of space and time where habitats become increasingly heterogeneous. Efforts to upscale the relationship between biodiversity and function have yielded inconclusive results. Given that increasing habitat heterogeneity is a ubiquitous consequence of increasing spatial scale, we asked: as habitat heterogeneity increases, can single species continue to maintain ecosystem function? Or, does transgressive overyielding (functioning of species mixture divided by the functioning of the highest functioning single species) change with habitat heterogeneity? We addressed this using a combination of computer simulations, an experiment and a meta-analysis. The three parts followed the same rationale: habitat heterogeneity was increased by aggregating local habitats with different conditions into larger and more heterogeneous landscapes. The computer simulations showed that, on average, transgressive overyielding increased with habitat heterogeneity because monoculture functioning decreased with habitat heterogeneity. We tested this expectation experimentally by varying the strain richness from one to five species across 10800 bacterial communities in five different habitats defined by sub-inhibitory concentrations of antibiotics. On average, the experimental results concurred with the simulations. We tested the generality of this result using a meta-analysis of 26 published experiments that manipulated habitat conditions and species richness. This confirmed that transgressive overyielding tended to increase with habitat heterogeneity but only when species were specialised to different habitats and were not inhibited in mixtures by negative species interactions. This was not the case in several experiments used in our meta-analysis where one species maximised functioning across all habitats, contrary to the assumptions of many ecological models. Our results illustrate the importance of biodiversity at larger spatial scales with more heterogeneity but also highlights contingencies that this pattern depends on.
  •  
4.
  • Roger, Fabian, et al. (författare)
  • Effects of multiple dimensions of bacterial diversity on functioning, stability and multifunctionality
  • 2016
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 97:10, s. 2716-2728
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria are essential for many ecosystem services but our understanding of factors controlling their functioning is incomplete. While biodiversity has been identified as an important driver of ecosystem processes in macrobiotic communities, we know much less about bacterial communities. Due to the high diversity of bacterial communities, high functional redundancy is commonly proposed as explanation for a lack of clear effects of diversity. The generality of this claim has, however, been questioned. We present the results of an outdoor dilution-to-extinction experiment with four lake bacterial communities. The consequences of changes in bacterial diversity in terms of effective number of species, phylogenetic diversity, and functional diversity were studied for (1) bacterial abundance, (2) temporal stability of abundance, (3) nitrogen concentration, and (4) multifunctionality. We observed a richness gradient ranging from 15 to 280 operational taxonomic units (OTUs). Individual relationships between diversity and functioning ranged from negative to positive depending on lake, diversity dimension, and aspect of functioning. Only between phylogenetic diversity and abundance did we find a statistically consistent positive relationship across lakes. A literature review of 24 peer-reviewed studies that used dilution-to-extinction to manipulate bacterial diversity corroborated our findings: about 25% found positive relationships. Combined, these results suggest that bacteria-driven community functioning is relatively resistant to reductions in diversity.
  •  
5.
  • Roger, Fabian, et al. (författare)
  • Genetic diversity and ecosystem functioning in the face of multiple stressors
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Species diversity is important for a range of ecosystem processes and properties, including the resistance to single and multiple stressors. It has been suggested that genetic diversity may play a similar role, but empirical evidence is still relatively scarce. Here, we report the results of a microcosm experiment where four strains of the marine diatom Skeletonema marinoi were grown in monoculture and in mixture under a factorial combination of temperature and salinity stress. The strains differed in their susceptibility to the two stressors and no strain was able to survive both stressors simultaneously. Strong competition between the genotypes resulted in the dominance of one strain under both control and salinity stress conditions. The overall productivity of the mixture, however, was not related to the dominance of this strain, but was instead dependent on the treatment; under control conditions we observed a positive effect of genetic richness, whereas a negative effect was observed in the stress treatments. This suggests that interactions among the strains can be both positive and negative, depending on the abiotic environment. Our results provide additional evidence that the biodiversity-ecosystem functioning relationship is also relevant at the level of genetic diversity.
  •  
6.
  • van der Plas, F., et al. (författare)
  • Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality
  • 2018
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 21:1, s. 31-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.
  •  
7.
  • Wittorf, Lea, et al. (författare)
  • Habitat diversity and type govern potential nitrogen loss by denitrification in coastal sediments and differences in ecosystem-level diversities of disparate N2O reducing communities
  • 2020
  • Ingår i: FEMS Microbiology Ecology. - : Oxford University Press (OUP). - 0168-6496 .- 1574-6941. ; 96:9
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 Oxford University Press. All rights reserved. In coastal sediments, excess nitrogen is removed primarily by denitrification. However, losses in habitat diversity may reduce the functional diversity of microbial communities that drive this important filter function. We examined how habitat type and habitat diversity affects denitrification and the abundance and diversity of denitrifying and N2O reducing communities in illuminated shallow-water sediments. In a mesocosm experiment, cores from four habitats were incubated in different combinations, representing ecosystems with different habitat diversities. We hypothesized that habitat diversity promotes the diversity of N2O reducing communities and genetic potential for denitrification, thereby influencing denitrification rates. We also hypothesized that this will depend on the identity of the habitats. Habitat diversity positively affected ecosystem-level diversity of clade II N2O reducing communities, however neither clade I nosZ communities nor denitrification activity were affected. The composition of N2O reducing communities was determined by habitat type, and functional gene abundances indicated that silty mud and sandy sediments had higher genetic potentials for denitrification and N2O reduction than cyanobacterial mat and Ruppia maritima meadow sediments. These results indicate that loss of habitat diversity and specific habitats could have negative impacts on denitrification and N2O reduction, which underpin the capacity for nitrogen removal in coastal ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy