SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ganguly Parthasarathi) "

Sökning: WFRF:(Ganguly Parthasarathi)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Parthasarathi, A, et al. (författare)
  • The Role of Neutrophil-to-Lymphocyte Ratio in Risk Stratification and Prognostication of COVID-19: A Systematic Review and Meta-Analysis
  • 2022
  • Ingår i: Vaccines. - : MDPI AG. - 2076-393X. ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have proposed that the neutrophil–lymphocyte ratio (NLR) is one of the various biomarkers that can be useful in assessing COVID-19 disease-related outcomes. Our systematic review analyzes the relationship between on-admission NLR values and COVID-19 severity and mortality. Six different severity criteria were used. A search of the literature in various databases was conducted from 1 January 2020 to 1 May 2021. We calculated the pooled standardized mean difference (SMD) for the collected NLR values. A meta-regression analysis was performed, looking at the length of hospitalization and other probable confounders, such as age, gender, and comorbidities. A total of sixty-four studies were considered, which included a total of 15,683 patients. The meta-analysis showed an SMD of 3.12 (95% CI: 2.64–3.59) in NLR values between severe and non-severe patients. A difference of 3.93 (95% CI: 2.35–5.50) was found between survivors and non-survivors of the disease. Upon summary receiver operating characteristics analysis, NLR showed 80.2% (95% CI: 74.0–85.2%) sensitivity and 75.8% (95% CI: 71.3–79.9%) specificity for the prediction of severity and 78.8% (95% CI: 73.5–83.2%) sensitivity and 73.0% (95% CI: 68.4–77.1%) specificity for mortality, and was not influenced by age, gender, or co-morbid conditions. Conclusion: On admission, NLR predicts both severity and mortality in COVID-19 patients, and an NLR > 6.5 is associated with significantly greater the odds of mortality.
  •  
4.
  • Parthasarathi, A, et al. (författare)
  • Willingness to Accept the COVID-19 Vaccine and Related Factors among Indian Adults: A Cross-Sectional Study
  • 2022
  • Ingår i: Vaccines. - : MDPI AG. - 2076-393X. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • To achieve herd immunity to a disease, a large portion of the population needs to be vaccinated, which is possible only when there is broad acceptance of the vaccine within the community. Thus, policymakers need to understand how the general public will perceive the vaccine. This study focused on the degree of COVID-19 vaccine hesitancy and refusal and explored sociodemographic correlations that influence vaccine hesitancy and refusal. A cross-sectional online survey was conducted among the adult population of India. The survey consisted of basic demographic questions and questions from the Vaccination Attitudes Examination (VAX) Scale. Multinomial logistical regression was used to identify correlates of vaccine hesitancy and refusal. Of the 1582 people in the study, 9% refused to become vaccinated and 30.8% were hesitant. We found that both hesitancy and refusal predictors were nearly identical (lower socioeconomic status, female gender, and older age groups), except for three groups (subjects aged 45–64 years, those with approximate income <10,000 INR/month, and those residing in rural households) that showed slightly higher odds of vaccine hesitancy than refusal. We need to address the underlying sociodemographic determinants and formulate public awareness programs to address specific subgroups that are at higher risk of rejecting the vaccine and convert those who are undecided or hesitant into those willing to accept the vaccine.
  •  
5.
  •  
6.
  • Ullah, MK, et al. (författare)
  • Impact of Acute Exacerbation and Its Phenotypes on the Clinical Outcomes of Chronic Obstructive Pulmonary Disease in Hospitalized Patients: A Cross-Sectional Study
  • 2022
  • Ingår i: Toxics. - : MDPI AG. - 2305-6304. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute exacerbations of COPD (AECOPD) are clinically significant events having therapeutic and prognostic consequences. However, there is a lot of variation in its clinical manifestations described by phenotypes. The phenotypes of AECOPD were categorized in this study based on pathology and exposure. In our cross-sectional study, conducted between 1 January 2016 to 31 December 2020, the patients were categorized into six groups based on pathology: non-bacterial and non-eosinophilic; bacterial; eosinophilic; bacterial infection with eosinophilia; pneumonia; and bronchiectasis. Further, four groups were classified based on exposure to tobacco smoke (TS), biomass smoke (BMS), both, or no exposure. Cox proportional-hazards regression analyses were performed to assess hazard ratios, and Kaplan–Meier analysis was performed to assess survival, which was then compared using the log-rank test. The odds ratio (OR) and independent predictors of ward admission type and length of hospital stay were assessed using binomial logistic regression analyses. Of the 2236 subjects, 2194 were selected. The median age of the cohort was 67.0 (60.0 to 74.0) and 75.2% were males. Mortality rates were higher in females than in males (6.2% vs. 2.3%). AECOPD-B (bacterial infection) subjects [HR 95% CI 6.42 (3.06–13.46)], followed by AECOPD-P (pneumonia) subjects [HR (95% CI: 4.33 (2.01–9.30)], were at higher mortality risk and had a more extended hospital stay (6.0 (4.0 to 9.5) days; 6.0 (4.0 to 10.0). Subjects with TS and BMS-AECOPD [HR 95% CI 7.24 (1.53–34.29)], followed by BMS-AECOPD [HR 95% CI 5.28 (2.46–11.35)], had higher mortality risk. Different phenotypes have different impacts on AECOPD clinical outcomes. A better understanding of AECOPD phenotypes could contribute to developing an algorithm for the precise management of different phenotypes.
  •  
7.
  • Wang, Haidong, et al. (författare)
  • Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015
  • 2016
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 388:10053, s. 1459-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures.METHODS: We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).FINDINGS: Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4-61·9) in 1980 to 71·8 years (71·5-72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7-17·4), to 62·6 years (56·5-70·2). Total deaths increased by 4·1% (2·6-5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8-18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6-16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9-14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1-44·6), malaria (43·1%, 34·7-51·8), neonatal preterm birth complications (29·8%, 24·8-34·9), and maternal disorders (29·1%, 19·3-37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death.INTERPRETATION: At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy